
MonetDB Reference Manual
Version 5.0

The MonetDB Development Team

Last updated: Sept 9, 2007
Copyright (C) 2000-2007 CWI
Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.
Disclaimer The reference manual and underlying source code base are still under develop-
ment. This may lead to incomplete and inconsistencies descriptions, for which we apologize
in advance. You can help improving the manual using the MonetDB mailing list.

i

Table of Contents

1 General Introduction. 1
1.1 Intended Audience . 1
1.2 How to read this manual . 1
1.3 Features and Limitations . 2

1.3.1 When to consider MonetDB ? . 2
1.3.2 When not to consider MonetDB ? . 3
1.3.3 What are key features of MonetDB . 3
1.3.4 Size Limitations for MonetDB . 4

1.4 A Brief History of MonetDB . 4
1.5 Manual Generation . 5

1.5.1 Conventions and Notation . 6
1.5.2 Additional Resources . 6

1.6 Downloads and Installation . 6
1.6.1 Developers Distribution . 7
1.6.2 Experts . 7
1.6.3 Linux Installation . 7

1.6.3.1 The Suite . 8
1.6.3.2 Prerequisites . 8
1.6.3.3 Getting the Software . 10
1.6.3.4 CVS checkout . 10
1.6.3.5 Bootstrap, Configure and Make . 10
1.6.3.6 Bootstrap . 10
1.6.3.7 Configure . 11
1.6.3.8 Make . 11
1.6.3.9 Testing the Build. 11
1.6.3.10 Install . 12
1.6.3.11 Testing the Installation . 12
1.6.3.12 Usage . 12
1.6.3.13 Troubleshooting . 13
1.6.3.14 Reporting Problems . 15

1.6.4 Windows Installation . 15
1.6.4.1 Prerequisites . 15
1.6.4.2 Optional Software . 16
1.6.4.3 Getting the Software . 16
1.6.4.4 Compiling . 16
1.6.4.5 Installing . 17
1.6.4.6 Testing the Installation . 17
1.6.4.7 Usage . 17
1.6.4.8 Alternative builds . 18

1.6.5 Daily Builds . 18
1.6.5.1 Stability . 18
1.6.5.2 Portability . 19

1.7 Development Roadmap . 19

ii

1.7.1 Server Roadmap . 19
1.7.2 SQL Roadmap . 19
1.7.3 XQuery Roadmap . 20
1.7.4 Embedded MonetDB Roadmap . 21

1.8 Server Management . 21
1.8.1 Start and Stop the Server . 21
1.8.2 Database Dumps . 22
1.8.3 Server Architecture . 23
1.8.4 Database Configuration . 23
1.8.5 Checkpoint and Recovery. 23
1.8.6 Detach/Attach Database . 24
1.8.7 Embedded Server . 25

1.8.7.1 Mbedded Example . 25
1.8.7.2 Limitations for Embedded MonetDB 27

2 Client Interfaces . 29
2.1 Mapi Client . 29

2.1.1 Online help . 31
2.2 Jdbc Client . 31
2.3 Aqua Data Studio . 33
2.4 DbVisualizer . 33
2.5 SQuirreL . 34
2.6 iSQL-Viewer . 34
2.7 Web Services. 35

2.7.1 Apache Configuration . 35
2.7.2 httpd.conf . 35
2.7.3 xquery.cgi . 35
2.7.4 passing parameters. 36
2.7.5 Web Service Security . 36

2.8 httpd.conf . 37
2.9 xquery.cgi . 37
2.10 passing parameters . 38
2.11 How to use mclient with the XQuery language? 38
2.12 MonetDB Server . 39

2.12.1 Starting MonetDB Server . 39
2.12.2 Shutting down MonetDB Server . 39
2.12.3 MonetDB Client Side . 39
2.12.4 Executing a query . 39
2.12.5 How to add a document persistently to your collection? . . 39
2.12.6 How to delete a document persistently from your collection?

. 39

iii

3 SQL . 40
3.1 SQL Core. 40

3.1.1 Syntax . 41
3.1.1.1 Comments . 41
3.1.1.2 Identifiers and Keywords . 41
3.1.1.3 Literal Constants . 41
3.1.1.4 Special Characters . 41
3.1.1.5 Operator Precedences . 42

3.1.2 Value Expressions . 42
3.1.3 Data Types . 42

3.1.3.1 Native Data Types . 43
3.1.3.2 Serial Types . 43
3.1.3.3 Extended Data Types . 44

3.1.4 Table Definition . 45
3.1.4.1 Create Table . 45
3.1.4.2 Default values . 47
3.1.4.3 Identity Column . 47
3.1.4.4 Constraints . 47

3.1.5 Table Management . 48
3.1.5.1 ALTER and DROP a Table . 48
3.1.5.2 Changing a Column . 48
3.1.5.3 ADD and DROP a Column . 49
3.1.5.4 ADD and DROP a Constraint. 49
3.1.5.5 CREATE VIEW . 49
3.1.5.6 Create Table Like . 50
3.1.5.7 Create Table AS Subquery . 50

3.1.6 Data Manipulation. 50
3.1.6.1 Insertions . 50
3.1.6.2 Updates . 50
3.1.6.3 Delete . 51
3.1.6.4 Copy from/into . 51

3.1.7 Queries . 51
3.1.7.1 Table expressions. 51
3.1.7.2 Select lists, distinct, sorting, limit 52
3.1.7.3 With expressions . 52
3.1.7.4 String Operations . 52
3.1.7.5 Pattern Matching Operations . 53
3.1.7.6 Date/Time Functions and Operators 53
3.1.7.7 Logical and Comparison Operators 54
3.1.7.8 Mathematical Functions and Operators 54
3.1.7.9 Aggregate Functions . 55
3.1.7.10 SubQueries . 55

3.1.8 Indexes . 55
3.1.9 Functions . 55
3.1.10 Transactions . 56
3.1.11 Schema Management . 57

3.1.11.1 Database Roles . 57
3.1.11.2 Privileges . 57

iv

3.1.11.3 Locale . 57
3.1.12 Database Management . 57

3.1.12.1 Backup and Recovery . 58
3.1.12.2 Managing the Logs . 58
3.1.12.3 Monitoring Resources . 58

3.1.13 Client Authorization . 58
3.1.14 Catalog Inspection . 58

3.1.14.1 Session Variables . 58
3.1.14.2 Environment Tables and Views . 59
3.1.14.3 Environment Functions . 60
3.1.14.4 Query Cache . 60
3.1.14.5 Administrator Functions . 60

3.2 SQL Runtime Features . 60
3.2.1 EXPLAIN Statement . 60
3.2.2 PROFILE Statement. 62
3.2.3 DEBUG Statement . 62
3.2.4 TRACE Statement . 63
3.2.5 Optimizer Control . 65

3.3 SQL programming. 65
3.3.1 Persistent Stored Modules . 65
3.3.2 Triggers . 66
3.3.3 External Functions. 66

4 XQuery . 68
4.1 XQuery Overview . 69

4.1.1 Database Scalability . 69
4.1.2 Standard Compliance . 70

4.2 Tractable Interfaces . 70
4.2.1 Pathfinder Project . 70

4.3 Document Management . 71
4.3.0.1 Document Collection . 71
4.3.0.2 Add Document. 71
4.3.0.3 Remove Document . 72
4.3.0.4 Cache Policy . 73
4.3.0.5 Miscellaneous . 74

4.4 Supported Functions . 75
4.5 Prepared Queries. 77

4.5.1 XQuery Modules . 77
4.5.2 Prepared Queries using Functions from Modules 78

4.6 StandOff Extensions . 79
4.6.1 Extended XPath Steps for Region Querying 80

4.6.1.1 context/select-narrow::nodename 80
4.6.1.2 context/select-wide::nodename . 80
4.6.1.3 context/reject-narrow::nodename 80
4.6.1.4 context/reject-wide::nodename . 80

4.6.2 Availability . 80
4.6.3 Why Extending the XPath Standard? 81

4.7 XRPC Extension . 81

v

4.7.1 XRPC Syntax . 82
4.7.2 XRPC Call Examples . 82
4.7.3 XRPC Server . 84
4.7.4 The SOAP XRPC Message Format . 87

4.8 Frequently Asked Questions . 90
4.8.1 General . 90
4.8.2 Installation . 91
4.8.3 XQuery . 91
4.8.4 Miscellaneous. 91

4.9 Design Considerations . 92
4.10 Architecture Overview . 92
4.11 MonetDB Assembly Language (MAL) . 93
4.12 Execution Engine . 94
4.13 Session Scenarios . 95
4.14 Scenario management. 95

5 MonetDB Assembly Language (MAL) 97
5.1 MAL Literals . 97
5.2 MAL Variables . 97
5.3 Instructions . 98
5.4 MAL Flow-of-control . 98
5.5 Functions . 100

5.5.1 Polymorphic Functions . 100
5.5.2 C functions . 101

5.6 Factories . 101
5.6.1 Factory Ownership. 102
5.6.2 Complex Factories . 103
5.6.3 Materialized Views . 104

5.7 Type Resolution . 105
5.7.1 User Defined Types . 106
5.7.2 Defining your own types . 106

5.8 Boxed Variables . 107
5.8.1 Session Box . 108
5.8.2 Garbage Collection . 109
5.8.3 Globale Environment . 109

5.9 Property Management . 109
5.10 Properties at the MAL level. 111
5.11 The cost model problem . 112
5.12 SQL case . 112
5.13 Implementation rules . 113
5.14 Property ADT implementation . 113
5.15 Predefined properties . 113

6 The MAL Interpreter . 114
6.1 MAL API . 114
6.2 Exception handling . 114
6.3 Garbage collection . 115
6.4 MAL runtime stack . 115

vi

7 The MAL Optimizer . 116
7.1 The Optimizer Landscape . 116

7.1.1 Optimizer Dependencies . 119
7.1.2 Optimizer Building Blocks . 120
7.1.3 Building Your Own Optimizer . 121
7.1.4 Optimizer framework . 121
7.1.5 Lifespan analysis . 122
7.1.6 Flow analysis . 123

7.2 Optimizer Toolkit . 123
7.2.1 Access mode optimization . 123
7.2.2 Accumulator Evaluations . 123
7.2.3 Alias Removal . 124
7.2.4 Code Factorization. 124
7.2.5 Coercion Removal . 125
7.2.6 Common Subexpression Elimination 125
7.2.7 Constant Expression Evaluation . 126
7.2.8 Costmodel Approach . 127
7.2.9 Dead Code Removal . 127
7.2.10 Emptyset Reduction . 128
7.2.11 SQL specifics . 129
7.2.12 Garbage Collection . 129
7.2.13 Heuristic rewrites rules . 130
7.2.14 Join Paths . 130
7.2.15 Macro and Orcam Processing . 131
7.2.16 Known issues . 131
7.2.17 Merge Tables . 132
7.2.18 Multiplex Compilation . 133
7.2.19 BAT Partitions . 134
7.2.20 Peephole optimization. 134
7.2.21 Query Execution Plans . 135
7.2.22 Range Propagation . 136
7.2.23 Remote Queries . 137
7.2.24 Singleton Set Reduction . 138
7.2.25 Stack Reduction . 138
7.2.26 Strength Reduction . 138

8 The MAL Debugger . 140
8.1 Program Debugging . 140
8.2 Handling Breakpoints . 142
8.3 Profile Switches . 143
8.4 Program Inspection . 144
8.5 Runtime Inspection and Reflection . 144
8.6 Debugger Attachment . 146

vii

9 The MAL Profiler . 147
9.1 Event Filtering . 147
9.2 Event Caching . 148
9.3 Monitoring Variables . 148

9.3.1 The Stethoscope . 149

10 The MAL Modules . 151
10.1 Module Loading. 151
10.2 Module file loading . 151
10.3 BAT Extensions . 152
10.4 BAT Buffer Pool . 153
10.5 Constants . 156
10.6 BAT Iterators. 157
10.7 Box definitions . 158
10.8 Client Management . 159
10.9 Factory management . 160
10.10 Inspection . 160
10.11 Input/Output module . 162
10.12 Language Extensions . 164
10.13 MAL debugger interface . 166
10.14 Manual Inspection . 168
10.15 MonetDB server interface . 169
10.16 Multiple association tables . 172
10.17 BAT Partition Manager . 173

10.17.1 Derived partitioning . 174
10.17.2 Using partitions . 174
10.17.3 Partition updates . 174
10.17.4 Partitioned results . 175
10.17.5 Partition iterators . 175
10.17.6 Partition selection . 176

10.18 Performance profiler . 176
10.18.1 Monet Event Logger . 176
10.18.2 Execution tracing . 176

10.19 PCRE library interface . 178
10.20 Statistics box. 178
10.21 The table interface . 180

10.21.1 Tablet properties . 182
10.21.2 Scalar tablets . 182
10.21.3 Tablet dump/restore . 183
10.21.4 Front-end extension . 183
10.21.5 The commands . 183

10.22 Transaction management . 185

viii

11 The Inner Core . 187
11.1 Short Outline . 187

11.1.1 Rationale . 189
11.2 Interface Files. 190

11.2.1 Database Context . 190
11.2.2 GDK session handling . 191

11.3 Binary Association Tables . 191
11.3.1 GDK variant record type . 191
11.3.2 The BAT record . 191
11.3.3 Heap Management . 193
11.3.4 Internal HEAP Chunk Management 193
11.3.5 BAT construction. 194
11.3.6 BUN manipulation . 194
11.3.7 BAT properties . 195
11.3.8 BAT manipulation . 196
11.3.9 BAT Input/Output . 196
11.3.10 Heap Storage Modes . 197
11.3.11 Printing . 197
11.3.12 BAT clustering . 197

11.4 BAT Buffer Pool . 198
11.5 GDK Extensibility . 198

11.5.1 Atomic Type Descriptors . 198
11.5.2 Atom Definition . 199
11.5.3 Atom Manipulation . 199
11.5.4 Unique OIDs . 200
11.5.5 Built-in Accelerator Functions . 200
11.5.6 Multilevel Storage Modes . 201

11.6 GDK Utilities . 201
11.6.1 GDK memory management . 201
11.6.2 GDK error handling . 201

11.7 Transaction Management . 202
11.7.1 Delta Management . 203

11.8 BAT Alignment and BAT views . 203
11.9 BAT Iterators. 204

11.9.1 simple sequential scan . 205
11.9.2 batloop where the current element can be deleted/updated

. 205
11.9.3 sequential scan over deleted BUNs . 205
11.9.4 hash-table supported loop over BUNs 205
11.9.5 specialized hashloops. 206
11.9.6 loop over a BAT with ordered tail . 206

11.10 Common BAT Operations . 207
11.10.1 BAT aggregates . 207
11.10.2 Alignment transformations . 208
11.10.3 BAT relational operators . 208

11.11 Aggregates Module . 209
11.12 Timers and Timed Interrupts . 209
11.13 BAT Algebra . 209

ix

11.14 Basic array support . 210
11.15 Binary Association Tables . 210
11.16 BAT calculator . 210
11.17 NULL semantics . 210
11.18 BAT Coercion Routines . 211
11.19 BAT if-then-else multiplex expressions. 211
11.20 Color multiplexes . 211
11.21 String multiplexes . 211
11.22 BAT math calculator . 211
11.23 The math module . 211
11.24 Time/Date multiplexes . 211
11.25 Basic arithmetic . 212
11.26 Performance Counters . 212
11.27 The group module . 213

11.27.1 Algorithms . 213
11.27.2 Cross Table (GRP) . 214

11.28 Lightweight Lock Module . 214
11.29 The Transaction Logger . 214
11.30 Multi-Attribute Equi-Join . 215
11.31 Priority queues . 215
11.32 System state information . 215
11.33 Unix standard library calls . 215

12 SQL/XML . 216
12.1 XML Import . 216
12.2 XML Publishing . 216
12.3 XPath and XQuery. 219
12.4 XML Schema . 219

12.4.1 Spatial support . 220
12.4.2 Get Going . 221
12.4.3 Acceleration Spatial Operations . 221
12.4.4 Installation. 222
12.4.5 Bulk loading . 222
12.4.6 Limitations . 222
12.4.7 Spatial Types . 222
12.4.8 SQL functions on spatial objects . 223

12.4.8.1 Functions on mbr’s . 223
12.4.8.2 Conversion from and to Well-known Text 223
12.4.8.3 Analysis functions on Geometry 224
12.4.8.4 SQL functions on Point . 224
12.4.8.5 SQL functions on Curve . 224
12.4.8.6 SQL functions on LineString . 224
12.4.8.7 SQL functions on Surface . 225
12.4.8.8 SQL functions on Polygon . 225
12.4.8.9 SQL functions on GeomCollection 225

x

13 Application Programming Interfaces 226
13.1 The Mapi Library . 226

13.1.1 Sample MAPI Application . 226
13.1.2 Command Summary . 228
13.1.3 Mapi Library . 229
13.1.4 Error Message . 230
13.1.5 Mapi Function Reference . 230
13.1.6 Connecting and Disconnecting . 230
13.1.7 Sending Queries . 231
13.1.8 Getting Results . 232
13.1.9 Errors . 233
13.1.10 Parameters . 234
13.1.11 Miscellaneous . 234

13.2 MonetDB Perl Library . 236
13.2.1 A Simple Perl Example . 236

13.3 MonetDB PHP Library . 238
13.3.1 A Simple PHP Example . 238

13.4 MonetDB Python Library . 241
13.4.1 Installation. 241
13.4.2 A Simple Python Example . 241
13.4.3 Python MonetDB functions . 242

13.5 MonetDB JDBC Driver . 242
13.5.1 Requirements . 242
13.5.2 Getting the driver Jar . 242
13.5.3 Compiling the driver (using ant, optional) 243
13.5.4 Testing the driver using the JdbcClient utility 243
13.5.5 Using the driver in your Java programs 243
13.5.6 A sample Java program . 244

13.6 MonetDB ODBC Driver . 245

Appendix A SQL Features 247

Appendix B MAL Instruction Summary. . . . 252

Appendix C MAL Instruction Help 258

Appendix D Historical Background on the VOC
. 287

Chapter 1: General Introduction 1

1 General Introduction

The MonetDB reference manual serves as the primary entry point to locate information on
its functionality, system architecture, services and best practices on using its components.

The manual is produced from a Texinfo framework file, which collects and organizes
bits-and-pieces of information scattered around the many source components comprising
the MonetDB software family. The Texinfo file is turned into a HTML browse-able version
using makeinfo program. The PDF version can be produced using pdflatex. Alternative
formats, e.g., XML and DocBook format, can be readily obtained from the Texinfo file.

The copyright(2007) on the MonetDB software, documentation and logo is owned by
CWI. Other trademarks and copyrights referred to in this manual are the property of their
respective owners.

1.1 Intended Audience

The MonetDB reference manual is aimed at application developers and researchers with an
intermediate level exposure to database technology, its embedding in host environments,
such as C, Perl, Python, PHP, or middleware solutions based on JDBC and ODBC.

The bulk of the MonetDB reference manual deals with the techniques deployed in the
back-end for the expert user and researcher. Judicious use of the programming interfaces
and database kernel modules for domain specific tasks lead to high-performance solutions.
The grand challenge for the MonetDB development team is to assemble a sufficient and
orthogonal set of partial solutions to accommodate a wide variety of front-ends.

Feedback on the functionality provided is highly appreciated, especially when you embark
on a complex programming project. If the envisioned missing functionality is generally
applicable it makes sense to contribute it to the community. Share your comments and
thoughts through the MonetDB mailing list held at SourceForge.

1.2 How to read this manual

The reference manual covers a lot of ground, which at first reading may be slightly con-
fusing. The material is presented in a top-down fashion. Starting at installing the system
components, SQL & XQuery and the application interface layer, it discusses the MAL soft-
ware stack at length. Forward references are included frequently to point into the right
direction for additional information.

If you are interested in technical details of the MonetDB system, you should start read-
ing 〈undefined〉 [Design Overview], page 〈undefined〉. Two reading tracks are possible. The
Chapter 5 [MAL Reference], page 97 language and subsequent sections describe the ab-
stract machine and MAL optimizers to improve execution speed. It is relevant for a better
understanding of the query processing behavior and provides an entry point to built new
languages on top of the database kernel. The tutorial on SQL to MAL compilation provides
a basis for developing your own language front-end.

The second track, The Inner Core describes the datastructures and operations exploited
in the abstract machine layer. This part is essential for developers to aid in bug fixing and
to extend the kernel with new functionality. For most readers, however, it can be skipped
without causing problems to develop efficient applications.

Chapter 1: General Introduction 2

1.3 Features and Limitations

In this section we give a short overview of the key features to (not) consider the MonetDB
product family. In a nutshell, its origin in the area of data-mining and data-warehousing
makes it an ideal choice for high volume, complex query dominant applications. MonetDB
was not designed for high-volume secure OLTP settings initially.

It is important to recognize that the MonetDB language interfaces are primarily aimed
at experienced system programmers and administrators. End-users are advised to use any
of the open-source graphical SQL workbenches to interact with the system.

1.3.1 When to consider MonetDB ?

A high-performance database management system. MonetDB is an easy accessible open-
source DBMS for SQL-[XQuery-]based applications and database research projects. Its
origin goes back over a decade, when we decided that the database hotset - the part used
by the applications - can be largely held in main-memory or where a few columns of a broad
relational table are sufficient to handle a request. Further exploitation of cache-conscious
algorithms proved the validity of these design decisions.

A multi-model system. MonetDB supports multiple query language front-ends. Aside
from its proprietary language, called the MonetDB Assembly Language (MAL), it aims at
ANSI SQL-2003 and W3C XQuery with update facilities. Their underlying logical data
model and computational scheme differs widely. The system is designed to provide a com-
mon ground for both languages and it is prepared to support languages based on yet another
data model or processing paradigm.

A binary-relation database kernel. MonetDB is built on the canonical representation
of database containers, called Binary Association Tables (BATs). The datastructures are
geared towards efficient representation when they mimic an n-ary relational scheme.

This led to an architecture where the traditional page-pool is replaced by one with a
much larger granularity based on BATs. They are sizeable entities -up to hundreds of
megabytes- swapped into memory upon need. The benefit of this approach has been shown
in numerous papers in the scientific literature.

A broad spectrum database system. MonetDB is continuously developed to support
a broad application field. Although originally developed for Analytical CRM products, it
is now being used at the low-end scale as an embedded relational kernel and projects are
underway to tackle the huge database problems encountered in scientific databases, e.g.
astronomy.

An extendable database system. MonetDB has been strongly influenced by the scientific
experiments to understand the interplay between algorithms and hardware features. It has
turned MonetDB into an extensible database system. It proves valuable in those cases
where an application specific and critical component makes all the difference between slow
and fast implementation.

An opensource software system. MonetDB has been developed over many years of
research at CWI, whose charter ensures that results are easily accessible to others. Either
through publications in the scientific domain or publication of the software components
involved. The MonetDB mailing list is the access point to a larger audience for advice.
A subscription to the mailing list helps the developer team to justify their hours put into
MonetDB’s development and maintenance.

Chapter 1: General Introduction 3

1.3.2 When not to consider MonetDB ?

There are several areas where MonetDB has not yet built a reputation. They are the prime
candidates for experimentation, but also areas where application construction may become
risky. Mature products or commercial support may then provide a short-term solution,
while MonetDB programmers team works on filling the functional gaps. The following
areas should be considered with care:

Persistent object caches. The tendency to develop applications in Java and C based on
a persistent object model, is a no-go area for MonetDB. Much like other database engines,
the overhead of individual record access does not do justice to the data structures and
algorithms in the kernel. They are chosen to optimize bulk processing, which always comes
at a price for individual object access.

Nevertheless, MonetDB has been used from its early days in a commercial application,
where the programmers took care in maintaining the Java object-cache. It is a route with
great benefits, but also one where sufficient manpower should be devoted to perform a good
job.

High-performance financial OLTP. MonetDB was originally not designed for highly con-
current transaction workloads. It was decided to make ACID hooks explicit in the query
plans generated by the front-end compilers. Given the abundance of main memory nowa-
days and the slack CPU cycles to process database requests, it may be profitable to consider
serial execution of all OLTP transactions.

The SQL implementation provides full transaction control and recovery.

Security. MonetDB has not been designed with a strong focus on security. The major
precautions have been taken, but are incomplete when access to the hosting machine is
granted or when direct access is granted to the Monet Assembly Language features. The
system is preferably deployed in a sand-boxed environment where remote access is encap-
sulated in a dedicated application framework.

Scaling over multiple machines. MonetDB does not provide a centralized controlled,
distributed database infrastructure yet. Instead, we move towards an architecture where
multiple autonomous MonetDB instances are joining together to process a large and dis-
tributed workload.

In the multimedia applications we have exploited successfully the inherent data paral-
lelism to speedup processing and reduce the synchronization cost. The underlying platforms
were Linux-based cluster computers with sizeable main memories.

1.3.3 What are key features of MonetDB

The list below provides a glimpse on the technical characteristics and features of the Mon-
etDB software packages.

The software characteristics for the MonetDB packages are:

• The kernel source code is written in ANSI-C and POSIX compliant.

• The application interface libraries source code complies with the latest language ver-
sions.

• The source code is written in a literate programming style, to stimulate proximity of
code and its documentation.

Chapter 1: General Introduction 4

• The source code is compiled and tested on many platforms with different compiler
options to ensure portability.

• The source code is based on the GNU toolkit, e.g. Automake, Autoconf, and Libtool
for portability.

• The source code is heavily tested on a daily basis, and scrutinized using the Valgrind
toolkit.

The heart is the MonetDB server, which comes with the following innovative features.

• A fully decomposed storage scheme using memory mapped files.
• It supports scalable databases, 32- and 64-bit platforms.
• Connectivity is provided through TCP/IP sockets and SSH on many platforms.
• Index selection, creation and maintenance is automatic.
• The relational operators materialize their results and are self-optimizing.
• The operations are cache- and memory-aware with supreme performance.
• The database back-end is multi-threaded and guards a single physical database in-

stance.

1.3.4 Size Limitations for MonetDB

The maximal database size supported by MonetBD depends on the underlying processing
platform, e.g., a 32- or 64-bit processor, and storage device, e.g., the file system and disk
raids.

The number of columns per tables is practically unlimited. The storage space limitation
depends only on the maximal file size. For each column is mapped onto a file, whose limit
is dictated by the operating system and hardware platform.

The number of concurrent user threads is a configuration parameter. Middleware solu-
tions are adviced to serialize access to the database when large number of users are expected
to access the database.

1.4 A Brief History of MonetDB

The Dark Ages [1979-1992] The development of the MonetDB software family goes back as
far as the early eighties when the first relational kernel, called Troll, was delivered to a larger
audience. It was spread over ca 1000 sites world-wide and became part of a software case-
tool until the beginning of the nineties. None of the code of this system has survived, but
several ideas and experiences on how to obtain a fast kernel by simplification and explicit
materialization found their origin during this period.

The second part of the eighties was spent on building the first distributed main-memory
database system in the context of the national project PRISMA. A fully functional system
of 100 processors and a wealthy 1GB of main memory showed the road to develop database
technology from a different perspective.

The Early Days [1993-1995] Immediately after the PRISMA project was termed dead, a
new database kernel based on Binary Association Tables (BATs) was laid out. The original
target was to aim for better support of scientific databases with their then archaic file
structures.

Chapter 1: General Introduction 5

The Data Distilleries Era [1996-2003] The datamining projects running as of 1993 called
for better database support. It culminated in the spin-off Data Distilleries, which based
their analytical customer relationship suite on the power provided by the early MonetDB
implementations. In the years following, many technical innovations were paired with strong
industrial maturing of the software base. Data Distilleries became a subsidiary of SPSS in
2003 and its development activity was shifted to Chicago in 2007.

The Open-Source Challenge [2003-2007] Moving MonetDB Version 4 into the open-
source field required a large number of extensions to the code base. It became utmost
important to support a mature implementation of the SQL-99 standard, and the bulk of
application programming interfaces (PHP,JDBC,Perl,ODBC). The culprit of this activity
was the first official release in 2004 and the release of the XQuery front-end in 2005.

The Road Ahead [2007- This manual describes the MonetDB Version 5 release, the result
of a multi-year activity to clean up the software stack and to better support both simple
and complex database requests.

The Future New versions in the MonetDB software family are under development. Ex-
tensions and renovation of the kernel are studied in the X100 project. Its Volcano-style
interpreter aims to provide performance in I/O-dominant and streaming settings using vec-
torized processing and Just-In-Time (de)compression.

The scene of distributed database is (again) addressed in the Armada project, but not
using the traditional centralized administration focus. Instead the Armada project seeks the
frontiers of autonomous database systems, which still provide a coherent functional view to
its users. In its approach it challenges many dogmas in distributed database technology, such
as the perspective on global consistency, the role of the client in managing the distributed
world, and the way resources are spread.

The MonetDB software framework provides a rich setting to pursue these alleys of data-
base research. We hope that many may benefit from our investments, both research and
business wise.

1.5 Manual Generation

The MonetDB code base is a large collection of files, scattered over the system modules.
Each source file is written in a literal programming style, which physically binds documen-
tation with the relevant code sections. The utility program Mx processes the files marked
*.mx to extract the code sections for system compilation or to prepare for a pretty printed
listing.

The reference manual is based on Texinfo formatted documentation to simplify gen-
eration for different rendering platforms. The components for the reference manual are
extracted by

Mx -i -B -H1 <filename>.mx

which generates the file <filename>.bdy.texi. These pieces are collected and glued to-
gether in a manual framework, running makeinfo to produce the desired output format. The
Texinfo information is currently limited to the documentation, it could also be extended to
process the code.

A printable version of an *.mx file can be produced using the commands:
Mx <filename>.mx
pdflatex <filename>.tex

Chapter 1: General Introduction 6

1.5.1 Conventions and Notation

The typographical conventions used in this manual are straightforward. Monospaced text
is used to designate names in the code base and examples. Italics is used in explanations
to indicate where a user supplied value should be substituted.

Snippets of code are illustrated in small caps font. The interaction with textual client
interfaces uses the default prompt-setting of the underlying operating system.

Keywords in the MonetDB interface languages are case sensitive; SQL keywords are not
case sensitive. No distinction is made in this manual.

1.5.2 Additional Resources

Although this reference manual aims to be complete for developing applications with Mon-
etDB, it also depends on additional resources for a full understanding.

This reference manual relies on external documentation for the basics of its query lan-
guages SQL, XQuery, its application interfaces, PHP, Perl, Pyhton, and its middleware
support, JDBC and ODBC. Examples are used to illustrate their behaviour in the context
of MonetDB only. The resource locations identified below may at times proof valuable.
Perl DBI http://www.perl.org/
PHP5 http://www.php.net/
Python http://www.python.org/
XQuery http://www.w3c.org/TR/xquery/

The primary source for additional information is the MonetDB website,
http://monetdb.cwi.nl/, and the code base itself. Information on the background of its
architecture can be found in the library of scientific publications.

1.6 Downloads and Installation

For most people a binary distribution package is sufficient. The prime decision is to select
either the SQL or XQuery product line. They currently rely on different and incompatible
back-end servers.

The binary distribution contains all components for MonetDB application development,
i.e. a back-end server, an SQL or XQuery compiler, and the client libraries. These com-
ponents are packaged conveniently for several platforms in the download section at Source-
Forge. It can be installed in a private directory or in the Linux/Windows compliant default
folder location.

The Developers distribution is meant for source experimentation and functional enhance-
ments. A "stable" version is prepared regularly. It means that special care has been taken
to assure that errors reported during the nightly builds have been solved on the platforms
of interest. Major bug fixes are also applied to the latest stable version, while functional
enhancements are kept for the next release or the daily builds.

The Experts distribution is meant for MonetDB kernel software developers only. They
should have a clear understanding of Linux development tools, e.g. automake, config,
CVS, and team-based software development and the interdependencies of the MonetDB
components.

If you encounter errors during the installation, please have a look at the MonetDB
mailing list for common errors and some advice on how to proceed.

Chapter 1: General Introduction 7

1.6.1 Developers Distribution

Developers interested in source code to be linked with the MonetDB libraries or running on
non-supported platforms may use the nightly builds tarballs to assemble a working system.
Alternatively, they can check out the latest stable of current version from cvs.

The easiest way is use the All-In-One scripts provided. A quick installation based on
the nightly tarballs and super source tarball is supported by the monetdb-install.sh script.
Check it out and run it in an empty directory should be sufficient on most Linux platforms
to get going. It takes about 10-20 minutes to install and compile from scratch on a modern
PC. The nightly build source distribution comes with the complete test-bench to assure
that changes do not affect (in as far as they get tested) its stability. A single stable release
is maintained for external users while we concurrently work on the next release. Older
versions are not actively maintained by the development team.

1.6.2 Experts

The experts may want more control then provided by the developer distribution support.
Set up of a fully functional system requires downloading and installation of the latest pack-
ages from SourceForge. The compatibility table below illustrates the packages in the CVS
repository.

MonetDB/SQL MonetDB/XQueryClients

buildtools x x x
clients x x x
MonetDB x x
MonetDB4 x
MonetDB5 x
SQL x
Pathfinder x

Thanks to the GNU autoconf and automake tools, the MonetDB software runs on a
wide variety of hardware/software platforms. The MonetDB development team uses many
of the platforms available to perform automated nightly regression testing. For more details
see The Test Web.

The MonetDB code base -with daily builds available for users preferring living at the
edge- evolves quickly. Application developers, however, may tune into the MonetDB mailing
list to be warned when a major release has become available, or when detected errors require
a patch.

1.6.3 Linux Installation

This section helps you compile and install the MonetDB suite from scratch on Unix-like
systems (this includes of course Linux, but also MacOS X and Cygwin). It is meant to be
used when you want to compile and install from CVS source. When you use the prepared
tar balls, some of the steps described here should be skipped.

In case you prefer installing a pre-compiled binary distribution, please check out the
binary distribution from the download area.

This document assumes that you are planning on compiling and installing MonetDB on
a Unix-like system (e.g., Linux, IRIX, Solaris, AIX, Mac OS X/Darwin, or CYGWIN).

Chapter 1: General Introduction 8

1.6.3.1 The Suite

The MonetDB software suite consists of the following parts which need to be built in the
correct order:

‘buildtools’
Tools used only for building the other parts of the suite. These tools are only
needed when building from CVS. When building from the source distribution
(i.e. the tar balls), you do not need this.

‘MonetDB’ Fundamental libraries used in the other parts of the suite.

‘clients’ Libraries and programs to communicate with the server(s) that are part of the
suite.

‘MonetDB4’
The MIL-based server. This is required if you want to use XML/XQuery
(pathfinder), and can be used with SQL.

‘MonetDB5’
The MAL-based server. This can be used with and is recommended for SQL.

‘pathfinder’
The XML/XQuery engine built on top of MonetDB4.

‘sql’ The SQL server built on top of (targeted on) either MonetDB4 or MonetDB5.

MonetDB4 and MonetDB5 are the basic database engines. One or the other is required,
but you can have both. Pathfinder currently needs MonetDB4, sql can run on both Mon-
etDB4 and MonetDB5 (the latter is recommended).

The order of compilation and installation is important. It is best to use the above order
(where pathfinder and sql can be interchanged) and to configure-make-make install each
package before proceeding with the next.

1.6.3.2 Prerequisites

‘CVS’ You only need this if you are building from CVS. If you start with the source
distribution from SourceForge you don’t need CVS.
You need to have a working CVS. For instructions, see the SourceForge docu-
mentation and look under the heading CVS Instructions.

‘Python’ MonetDB uses Python (version 2.0.0 or better) during configuration of the soft-
ware. See http://www.python.org/ for more information. (It must be admitted,
version 2.0.0 is ancient and has not recently been tested, we currently use 2.4
and newer.)

‘autoconf/automake/libtool’
MonetDB uses GNU autoconf (>= 2.57) and automake (>= 1.5) during the
Bootstrap phase, and libtool (>= 1.4) during the Make phase. autoconf and
automake are not needed when you start with the source distribution.

‘standard software development tools’
To compile MonetDB, you also need to have the following standard software
development tools installed and ready for use on you system:

Chapter 1: General Introduction 9

• a C compiler (e.g. GNU’s gcc);
• GNU make (gmake) (native make on, e.g., IRIX and Solaris usually don’t

work).

The following are not needed when you start with the source distribution:
• a C++ compiler (e.g. GNU’s g++);
• a lexical analyzer generator (e.g., lex or flex);
• a parser generator (e.g., yacc or bison).

The following are optional. They are checked for during configuration and if
they are missing, the feature is just missing:
• swig
• perl
• php

‘buildtools (Mx, mel, autogen, and burg)’
These tools are not needed when you start with the source distribution.
Before building any of the other packages from the CVS sources, you first need
to build and install the buildtools. Check out buildtools with
cvs -d:pserver:anonymous@monetdb.cvs.sourceforge.net:/cvsroot/monetdb checkout buildtools

and follow the instructions in the README file, then proceed with MonetDB.
For this step only you need the C++ compiler.

‘libxml2’ The XML parsing library libxml2 is only used by XML/XQuery (pathfinder).
The library is used for:
1. the XML Schema import feature of the Pathfinder compiler, and
2. the XML document loader (runtime/shredder.mx).

If libxml2 is not available on your system, the Pathfinder compiler will be
compiled without XML Schema support. The XML document loader will not
be compiled at all in that case. Current Linux distributions all come with
libxml2.

A rough estimate of the packages space:
========== ======= ======= =======
Package Source Build Install
========== ======= ======= =======
buildtools 1.5 MB 8 MB 2.5 MB
MonetDB 2 MB 21 MB 4 MB
clients 9 MB 25 MB 10 MB
MonetDB4 35.5 MB 50 MB 14 MB
MonetDB5 26 MB 46 MB 12 MB
sql 100 MB 22.5 MB 8 MB
pathfinder 130 MB 43 MB 12 MB
========== ======= ======= =======

Some of the source packages are so large because they include lots of data for testing
purposes.

Chapter 1: General Introduction 10

1.6.3.3 Getting the Software

There are two ways to get the source code:

1. checking it out from the CVS repository on SourceForge;

2. downloading the pre-packaged source distribution from SourceForge.

The following instructions first describe how to check out the source code from the CVS
repository on SourceForge; in case you downloaded the pre-packaged source distribution,
you can skip this section and proceed to Bootstrap, Configure and Make.

1.6.3.4 CVS checkout

This command should be done once. It records a password on the local machine to be used
for all subsequent CVS accesses with this server.

cvs -d:pserver:anonymous@monetdb.cvs.sourceforge.net:/cvsroot/monetdb login

Just type RETURN when asked for the password.

Then get the software by using the command:

cvs -d:pserver:anonymous@monetdb.cvs.sourceforge.net:/cvsroot/monetdb checkout \
buildtools MonetDB clients MonetDB4 MonetDB5 pathfinder sql

This will create the named directories in your current working directory. Then first follow
the instructions in buildtools/README before continuing with the others. Naturally,
you don’t need to check out packages you’re not going to use.

Also see the SourceForge documentation for more information about using CVS.

1.6.3.5 Bootstrap, Configure and Make

Before executing the following steps, make sure that your shell environment (especially the
variables PATH. LD LIBRARY PATH, and PYTHONPATH) is set up so that the tools
listed above can be found. Also, set up PATH to include the prefix/bin directory where
prefix is the prefix is where you want everything to be installed, and set up PYTHON-
PATH to include the prefix/lib/python2.X directory where python2.X is the version of
Python being used. It is recommended to use the same prefix for all packages. Only the
prefix/lib/python2.X directory for buildtools is needed in PYTHONPATH.

In case you checked out the CVS version, you have to run bootstrap first; in case you
downloaded the pre-packaged source distribution, you should skip bootstrap and start
with configure (see Configure).

For each of the packages do all the following steps (bootstrap, configure, make, make
install) before proceeding to the next package.

1.6.3.6 Bootstrap

This step is only needed when building from CVS.

In the top-level directory of the package type the command (note that this uses auto-
gen.py which is part of the buildtools package — make sure it can be found in your
$PATH):

./bootstrap

Chapter 1: General Introduction 11

1.6.3.7 Configure

Then in any directory (preferably a new, empty directory and not in the MonetDB top-
level directory) give the command:
.../configure [<options>]

where ... is replaced with the (absolute or relative) path to the MonetDB top-level
directory.

The directory where you execute configure is the place where all intermediate source
and object files are generated during compilation via make.

By default, MonetDB is installed in /usr/local. To choose another target directory,
you need to call
.../configure --prefix=<prefixdir> [<options>]

Some other useful configure options are:
--enable-debug enable full debugging default=off
--enable-optimize enable extra optimization default=off
--enable-warning enable extended compiler warnings default=off
--enable-profile enable profiling default=off
--enable-instrument enable instrument default=off
--with-mx=<Mx> which Mx binary to use (default: whichever

Mx is found in your PATH)
--with-mel=<mel> which mel binary to use (default: whichever

mel is found in your PATH)
--enable-bits=<#bits> specify number of bits (32 or 64)

default is compiler default
--enable-oid32 use 32-bit OIDs on 64-bit systems default=off

You can also add options such as CC=<compiler> to specify the compiler and compiler
flags to use.

Use configure –help to find out more about configure options.
The –with-mx and –with-mel options are only used when configuring the sources as

retrieved through CVS.

1.6.3.8 Make

In the same directory (where you called configure) give the command
make

to compile the source code. Please note that parallel make runs (e.g. make -j2) are
currently known to be unsuccessful.

1.6.3.9 Testing the Build

This step is optional and only relevant for the packages MonetDB4, MonetDB5, pathfinder,
and sql.

If make went successfully, you can try
make check

This will perform a large number of tests, some are unfortunately still expected to fail,
but most should go successfully. At the end of the output there is a reference to an HTML
file which is created by the test process that shows the test results.

Chapter 1: General Introduction 12

1.6.3.10 Install

Give the command

make install

By default (if no –prefix option was given to configure above), this will install in
/usr/local. Make sure you have appropriate privileges.

1.6.3.11 Testing the Installation

This step is optional and only relevant for the packages MonetDB4, MonetDB5, pathfinder,
and sql.

Make sure that prefix/bin is in your path. Then in the package top-level directory issue
the command

Mtest.py -r

This should produce much the same output as make check above, but uses the installed
version of MonetDB.

You need write permissions in part of the installation directory for this command: it
will create subdirectories var/dbfarm and Tests.

1.6.3.12 Usage

The MonetDB4 and MonetDB5 engines can be used interactively or as a server. The XQuery
and SQL back-ends can only be used as servers.

To run MonetDB4 interactively, just run:

Mserver

To run MonetDB5 interactively, just run:

mserver5

The disadvantage of running the systems interactively is that you don’t get readline
support (if available on your system). A more pleasant environment can be had by using
the system as a server and using mclient to interact with the system. For MonetDB4 use:

Mserver --dbinit ’module(mapi); mil_start();’

When MonetDB5 is started as above, it automatically starts the server in addition to
the interactive "console".

In order to use the XQuery back-end, which is only available with MonetDB4, start the
server as follows:

Mserver --dbinit ’module(pathfinder);’

If you want to have a MIL server in addition to the XQuery server, use:

Mserver --dbinit ’module(pathfinder); mil_start();’

In order to use the SQL back-end with MonetDB4, use:

Mserver --dbinit ’module(sql_server);’

If you want to have a MIL server in addition to the SQL server, use:

Mserver --dbinit ’module(sql_server); mil_start();’

In order to use the SQL back-end with MonetDB5, use:

Chapter 1: General Introduction 13

mserver5 --dbinit ’include sql;’

Once the server is running, you can use mclient to interact with the server. mclient
needs to be told which language you want to use, but it does not need to be told whether
you’re using MonetDB4 or MonetDB5. In another shell window start:

mclient -l<language>

where language is one of mil, mal, sql, or xquery. If no -l option is given, mil is the
default.

With mclient you get a text-based interface that supports command-line editing and
a command-line history. The latter can even be stored persistently to be re-used after
stopping and restarting mclient.

mclient --help

for details.
At the mclient prompt some extra commands are available. Type a single question

mark to get a list of options. Note that one of the options is to read input from a file using
<. This interferes with XQuery syntax. This is a known bug.

1.6.3.13 Troubleshooting

bootstrap fails if any of the requisite programs cannot be found or is an incompatible
version.

bootstrap adds files to the source directory, so it must have write permissions.
During bootstrap, the following might occur:

Remember to add ‘AC_PROG_LIBTOOL’ to ‘configure.in’.
You should add the contents of ‘/usr/share/aclocal/libtool.m4’ to ‘aclocal.m4’.
configure.in:37: warning: do not use m4_patsubst: use patsubst or m4_bpatsubst
configure.in:104: warning: AC_PROG_LEX invoked multiple times
configure.in:334: warning: do not use m4_regexp: use regexp or m4_bregexp
automake/aclocal 1.6.3 is older than 1.7.
Patching aclocal.m4 for Intel compiler on Linux (icc/ecc).
patching file aclocal.m4
Hunk #1 FAILED at 2542.
1 out of 1 hunk FAILED -- saving rejects to file aclocal.m4.rej
patching file aclocal.m4
Hunk #1 FAILED at 1184.
Hunk #2 FAILED at 2444.
Hunk #3 FAILED at 2464.
3 out of 3 hunks FAILED -- saving rejects to file aclocal.m4.rej

For some technical reasons, it is hard to completely avoid them. However, it is usually
safe to ignore them and simply proceed with the usual compilation procedure. Only in
case the subsequent configure or make fails, these warning might have to be taken more
seriously. In any case, you should include the bootstrap output whenever you report (see
‘Reporting Problems’) compilation problems.

configure will fail if certain essential programs cannot be found or certain essential
tasks (such as compiling a C program) cannot be executed. The problem will usually be
clear from the error message.

Chapter 1: General Introduction 14

If configure cannot find package XYZ, it is either not installed on your machine, or
it is not installed in places that configure searches (i.e., /usr, /usr/local). In the
first case, you need to install package XYZ before you can configure, make, and make
install MonetDB. In the latter case, you need to tell configure via –with-XYZ=<DIR>
where to find package XYZ on your machine. configure then looks for the header files in
<DIR>/include, and for the libraries in <DIR>/lib.

In case one of bootstrap, configure, or make fails — especially after a cvs update,
or after you changed some code yourself — try the following steps (in this order; if you are
using the pre-packaged source distribution, you can skip steps 2 and 3):

In case you experience problems after a cvs update, first make sure that you used "cvs
update -dP" (or have a line update -dP in your ~/.cvsrc); -d ensures that cvs checks
out directories that have been added since your last cvs update; -P removes directories
that have become empty, because all their file have been removed from the cvs repository.
In case you did not use cvs update -dP, re-run cvs update -dP, and remember to always
use cvs update -dP from now on (or simply add a line update -dP to your ~/.cvsrc)!

1. In case only make fails, you can try running:

make clean

in your build directory and proceed with step 5; however, if make then still fails, you
have to re-start with step 1.

2. Clean up your whole build directory (i.e., the one where you ran configure and make)
by going there and running:

make maintainer-clean

In case your build directory is different from your source directory, you are advised to
remove the whole build directory.

3. Go to the top-level source directory and run:

./de-bootstrap

and type y when asked whether to remove the listed files. This will remove all the
files that were created during bootstrap. Only do this with sources obtained through
CVS.

4. In the top-level source directory, re-run:

./bootstrap

Only do this with sources obtained through CVS.

5. In the build-directory, re-run:

configure

as described above.

6. In the build-directory, re-run:

make
make install

as described above.

If this still does not help, please contact us.

Chapter 1: General Introduction 15

1.6.3.14 Reporting Problems

Bugs and other problems with compiling or running MonetDB should be reported using
the bug tracking system at SourceForge (preferred) or emailed to monet@cwi.nl; see also
http://monetdb.cwi.nl/Development/Bugtracker/index.html. Please make sure that you
give a detailed description of your problem!

1.6.4 Windows Installation

This section helps you to install and compile MonetDB on a Windows system using the
Microsoft Visual compiler.

1.6.4.1 Prerequisites

• CVS You need to have a working CVS. Several solutions are available. We
use internally WinCVS and CVS under Cygwin. For general information
about the SourceForge repository, see docman and look under the heading CVS
Instructions. Pointers to CVS implementations for Windows can be found at
e.g.: http://www.cvshome.org/cyclic/cvs/windows.html http://www.wincvs.org/
http://www.componentsoftware.com/products/CVS/

• Python MonetDB uses Python (version 2.0.0 or better) during configuration of the
software. See python.org for more information.

• Pthreads Pthreads for Win32 should be installed to C:\Pthreads, otherwise you need
to patch the "PTHREAD = C:\Pthreads" line in "NT\rules.msc" according to your
setup. Newer versions of Pthreads seem to have the "include" & "lib" directory
not in C:\Pthreads, but in C:\Pthreads\prebuilt. In that case, you either have to
move the "include" & "lib" directory from C:\Pthreads\prebuilt to C:\Pthreads, or
set "PTHREAD = C:\Pthreads\prebuilt" in "NT\rules.msc".

• UnxUtils UnxUtils for Win32 must be installed in the root directory ("\", i.e., without
the default "\UnxUtils\" prefix) of the drive where you want to compile MonetDB.
The same drive is required, as the UnxUtils do not know about drive letters, and hence
absolute paths start with "\" (i.e., without a leading "C:", "D:", ...). The default
"\UnxUtils\" prefix has to be omitted, as otherwise the UnxUtils’ "bison" does not find
its own "bison.simple" file, which it expects to be in "/usr/share/bison/bison.simple"
(aka. "\usr\share\bison\bison.simple").

In addition to some tools used by Mtest.py for testing MonetDB (see below), UnxUtils
provide the lexical analyzer generator "flex" and the parser generator "bison", which
are required to compile MonetDB. Note: You have to install the UnxUtils using the
original .zip file. The third-party executable installer, chooses another default installa-
tion directory that doesn’t seem to work...

• Microsoft Visual C++ You need Microsoft Visual C++ 5 or higher. Notice that if you
do not own Microsoft Visual C++, you can still compile on Windows using the Cygnus
Posix-emulation environment CYGWIN In that case, you should follow the standard
instructions in the file ’HowToStart’. Alternatively, it might be possible to use the free
WIN32-GNU compilers as a drop-in replacement for the Microsoft tools, but we have
not tried this yet.

• disk space After downloading, MonetDB takes up about 40 MB of disk space; compi-

Chapter 1: General Introduction 16

lation adds another 70 MB. Testing takes about 45 MB, and the installation about 20
MB (not including any databases).

1.6.4.2 Optional Software

• PHP Download the Windows binaries in a zip package (i.e. not the Windows installer)
and the source package of PHP 5 from http://www.php.net/. Unzip the binaries into
e.g. “C:\php-5“ (for PHP-5, the zip file does not contain a top-level directory, so create
a new directory, e.g. “C:\php-5“, and unzip the files there–for PHP-4, the zip file does
contain a top-level directory, so you can unzip directly into “C:\“). In any case, make
sure there are no spaces in the path chosen. Also extract the sources somewhere, e.g.
in a directory parallel to MonetDB. If you don’t use “C:\php-5“ for the binaries or
you don’t extract the sources into “php-5.1.4“ in the same directory where MonetDB
is extracted, you will have to edit MonetDB’s “NT\rules.msc“ to change the cariables
“PHP SRCDIR“ and “PHP INSTDIR“ to reflect this. Make sure there are no spaces
in these two path names. Also note that the paths are only used from inside the
“NT\src\mapi\clients\php“ folder, so if they are relative, they have to be relative
from there. In order to get MonetDB to compile with these sources, it was necessary to
remove the line “#include "arpa/inet.h"“ from the file “main\php network.h“. When
compiling MonetDB, add the flag “HAVE PHP=1“ to the “nmake“ command line.
Note that only PHP version 5.1.4 has been tried recently.

• Pear: Pear is the PHP Extension and Application Repository. At the MonetDB side of
things, nothing more than what is described for PHP needs to be done. PEAR support
is automatically enabled.

• Java: The Java SDK (JDK) can be found at http://java.sun.com/. After installing,
make sure that the directory with java.exe and javac.exe are in your “PATH“ environ-
ment variable, and then compile MonetDB with the additional flag “HAVE JAVA=1“
on the “nmake“ command line.

1.6.4.3 Getting the Software

This command should be done once. It records a password on the local machine to be used
for all subsequent CVS accesses with this repository.

cvs -d:pserver:anonymous@monetdb.cvs.sourceforge.net:/cvsroot/monetdb login

Just type RETURN when asked for the password. The actual steps depend on your
CVS tool, e.g. in WinCVS you have to set the Admin preferences. Then get the software
by using the command::

cvs -d:pserver:anonymous@monetdb.cvs.sourceforge.net:/cvsroot/monetdb checkout MonetDB

This will create a directory MonetDB in your current working directory.

Also see SourceForge documentation for more information on using cvs.

1.6.4.4 Compiling

Open a Windows command shell or a UnxUtils shell and go to the top-level
directory of MonetDB. Make sure that the proper environment for MSVC++ is set,
otherwise call the corresponding BAT file. (see C:\Program Files\Microsoft Visual
Studio\VC98\Bin\VCVARS32.BAT). Make sure that Python, C:\Pthreads\lib (or

Chapter 1: General Introduction 17

wherever you installed Pthreads), and \usr\local\wbin are in the PATH of your command
shell. When all prerequisites have been satisfied, you type

cd NT
nmake NEED_MX=1

to compile the source code. If you want to compile with Java and PHP support, the
command is

nmake HAVE_JAVA=1 HAVE_PHP=1

If nmake went successfully, you can try
nmake check

This will do a lot of tests, some are unfortunately still expected to fail, but most should
go successfully. At the end of the output there is a reference to an HTML file which is
created by the test process and shows the test results. An explanation of the test results
can be found in XXX–to be filled in. Testing takes about 46 MB of disk space in the build
directory.

1.6.4.5 Installing

Give the command
nmake install

By default this will install MonetDB to “<sourcedir>\NT\“ where “<sourcedir>“ is the
top-level directory of MonetDB source tree. The current version does not provide any means
to change this default.

1.6.4.6 Testing the Installation

Make sure that <sourcedir>\NT\bin, <sourcedir>\NT\lib, and <sourcedir>\NT\lib\MonetDB
are in your PATH. In the MonetDB top-level directory issue the command

Mtest.py -r

(Make sure Mtest.py can be found, it should be in the bin directory that was filled by
the nmake install command.)

This should produce much the same output as nmake check above, but uses the installed
version of MonetDB.

1.6.4.7 Usage

There are two alternatives to use MonetDB interactively. In both cases, you first need to
make sure, that your environment is set as described above.

If you’re "in a hurry", you can then simply start
mserver5

and you get the "server console", where you can type you commands. The server console
is mainly meant for administrative use, hence there are no conveniences such as commandline
editing or command history.

For a more convenient interface, you should use the mclient. To do so, start the server
and then, in a second shell, set up the same environment and start mclient

You now have a text-based MAL interface that supports commandline editing and a
commandline history. The latter can even be stored persistently to be re-used after stopping
and restarting mclient; see

Chapter 1: General Introduction 18

mclient --help

for details.

1.6.4.8 Alternative builds

It is also possible to compile MonetDB using MinGW (Minimalist GNU for Windows) on
Windows. See the documentation in the source distribution.

1.6.5 Daily Builds

Next to functionality and performance, stability and portability are first class goals of
the MonetDB project. Pursuing these goals requires to constantly monitor the evolving
MonetDB code base. For this purpose, we developed a test environment that automatically
compiles and tests MonetDB (and its most prominent add-on packages) every night on a
variety of system configurations.

Software patches and functional enhancements are checked into the repositories on a
daily basis. A limited set of distribution packages is prepared to disseminate the latest to
developers and application programmers as quickly as possible. Such builds may, however,
contain bugs or sometimes even break old functionality.

The TestWeb provides access to the test web-site that summarizes the results of the
Automated Testing activities on various platforms. It is a good starting point before picking
up a daily build version.

Two versions of MonetDB are tested daily on all available platforms:
• the cutting edge development version ("Current"), i.e. the head of the main CVS

branch; and
• the latest release version ("Stable"), i.e. the head of the most recent release branch.

The test reports consist of three overview pages ("cross-check-lists") revealing the results
of
1. all compilation steps (bootstrap, configure, make, make install),
2. testing via "make check" (using debugmask 10, i.e., exhaustive monitoring and correc-

tion of physical BAT properties is enabled in the server), and
3. testing via "Mtest.py -d0 -r" (using debugmask 0, i.e., all debugging is switched off in

the server).

1.6.5.1 Stability

With a (code-wise) complex system like MonetDB, modifying the source code — be it for
fixing bugs or for adding new features — always bears the risk of breaking or at least
altering some existing functionality. To facilitate the task of detecting such changes, small
test scripts together with their respective correct/expected ("stable") output are collected
within the CVS repository of MonetDB. Given the complexity of MonetDB, there is no
way to do anything close to "exhaustive" testing, hence, the idea is to continuously extend
the test collection. E.g., each developer should add some tests as soon as she/he adds
new functionality. Likewise, a test script should be added for each bug report to monitor
whether/when the bug is fixed, and to prevent (or at least detect) future occurrences of
the same bug. The collection consists for hundreds of test scripts, each covering many
micro-functionality tests.

Chapter 1: General Introduction 19

To run all the tests and compare their current output to their stable output, a tool
called Mtest is included in the MonetDB code base. Mtest recursively walks through the
source tree, runs tests, and checks for difference between the stable and the current output.
As a result, Mtest creates the web interface that allows convenient access to the differences
encountered during testing. Each developer is supposed to run "Mtest" (respectively "make
check") on his/her favorite development platform and check the results before checking in
her/his changes. During the automatic daily tests, "make check" and "Mtest" are run on all
testing platforms and the TestWeb is generated to provide convenient access to the results.

1.6.5.2 Portability

Though Fedora Linux on AMD Athlon PC’s is our main development platform at CWI, we
do not limit our attention to this single platform. Supporting a broad range of hardware
and software platforms is an important concern.

Using standard configuration tools like automake, autoconf, and libtool, we have the
same code base compiling not only on various flavors of Unix (e.g., Linux, Cygwin, AIX,
IRIX, Solaris, MacOS X) but also on native Windows. Furthermore, the very code base
compiles with a wide spectrum of (C-) compilers, ranging from GNU’s gcc over several
native Unix compilers (IBM, SGI, Sun, Intel, Portland Group) to Microsoft’s Visual Studio
and Visual Studio .NET on Windows.

On the hardware side, we have (had) MonetDB running on "almost anything" from a
Intel StrongARM-based Linux PDA with 64 MB of flash memory to an SGI Origin2000
with 32 MIPS R12k CPU’s and a total of 64 GB of (shared) main memory.

1.7 Development Roadmap

In this section we summarize the MonetDB development roadmap. The information is
organized around the major system components. A precise timeline can not be given. It
depends too much on the available resources and urgency (= pressure) by our research needs
and clients.

1.7.1 Server Roadmap

The MonetDB server code base is continously being improved. A few areas under devel-
opement in the kernel area are:
• Parallelism Exploitation of multi-core systems calls for renewed attention to parallel

processing of the MonetDB kernel. Stress testing of concurrent processing may reveal
race conditions hereto undetected.

• Streaming Data A separete area is support for streaming database functionality. It
requires additions to the way we support io-channels and schedule query plans.

• Functional Enhancements Support for geographical application is underway. It consists
of a concise library for managing geometric types.

1.7.2 SQL Roadmap

The long term objective for the SQL front-end is to provide all features available in
SQL:2003. The priority for individual features is determined in an ad hoq way. The
SQL features scheduled for implementation and those that won’t be supported in the
foreseeable future are shown below.

Chapter 1: General Introduction 20

Our current assessment of the features planned for upcoming releases, in order of priority,
are:

• Window functions Datawarehousing and data mining applications require support for
windowing functions, e.g. (x() OVER (partition by order by)

• Full text retrieval A full text retrieval support function consists of a special constructed
index over text appearing in multiple columns of a relational table. This index is
built using well-known Information Retrieval techniques, such as stemming, keyword
recognition, and stop-word reduction. Several IR projects are underway, which enhance
MonetDB with IR capabilities.

• Support for multi-media objects MonetDB has been used in several multi-media
projects, but mostly to store and manipulate derived features. Multimedia objects
can be stored as unprotected URLs, i.e. there is no guarantee the object referred to
exists upon answering a query. The functionality should be extended with image,
audio, and video types.

• Replication Service A single-write multiple-read distributed replication service is pre-
pared for release mid 2007. It will provide both the concept of merge tables and selective
replication of tuples to different servers.

• GIS support Support for geographical application is underway. It consists of a concise
library for managing geometric types.

• General column and table constraint enforcement
• Internationalization of the character sets
• Full outer-join queries

The database back-end architecture prohibits easy implementation of several SQL-99
features. Those on the list below are not expected to be supported.

• Cursor based processing, because the execution engine is not based on the iterator
model deployed in other engines. A simulation of the cursor based scheme would be
utterly expensive from a performance point of view.

• Multi-level transaction isolation levels. Coarse grain isolation is provided using table
level locks.

1.7.3 XQuery Roadmap

The XQuery compiler is currently only available on MonetDB Version 4. It is based on the
Pathfinder compiler project. The MonetDB/XQuery Front End "Pathfinder" actually does
not much more than translating the XQuery statements to the relational ’MIL’ (MonetDB
Interpreter Language). If you want to know more about this intermediate language, you
can also look at the code produced by the Pathfinder compiler, but be warned. Seemingly
simple XQuery statements may be turned into hundreds of lines of MIL.

The XQuery compiler is currently be retargetted to ’MAL’ (MonetDB Assembly Lan-
guage). A separate track of the Pathfinder team is to provide a XQuery to SQL compiler
as well.

Topics in need for attention and planned for the next releases are shown below in ap-
proximately our priority list. For more information about implementation of new features,
keep a close eye on the Roadmap

Chapter 1: General Introduction 21

• Implement additional API’s (XML-DB, Perl, ???)

• Implement date/time functions

• Improve string-search in MonetDB/XQuery

1.7.4 Embedded MonetDB Roadmap

The embedded MonetDB software family provides support for both SQL and XQuery. The
software has been tuned to run on small scale hardware platforms.

A broader deployment of the embedded technology requires both extensions in the dis-
tributed MonetDB versions and its replication services. Continual attention is given to the
memory footprint and cpu/io resource consumptions on embedded devices.

A separate project, called the Datacell, is underway and geared at providing a streaming
environment for embedded applications.

1.8 Server Management

This section presents the basics to manage a collection of MonetDB database servers. The
system is designed to run out of the box for most end-users.

Additional finetuning by database administrators may be required in those cases where
the MonetDB software is centrally made available or when mission critial databases are
kept on highly-reliable production platforms.

1.8.1 Start and Stop the Server

Starting and stopping the server under Windows for local use doesn’t need an extensive
description. Just locate the server in the program list and start it. After the server has
been started, you can activate a textual client interface using the same procedure or use
any of the third-party GUIs. Close the window of the server and/or client and it ceases to
exist.

If you plan to make the server accessible from remote locations then the configuration
file should be editted. See Section 1.8.4 [Database Configuration], page 23 for more details.

On Linux systems you are confronted by the following programs: merovingian,
mserver5, monetdb, and mclient. The merovingian is a daemon process that controls
a collection of database servers, i.e. mserver5 processes, each looking after a single
physical database. Start this program or make it part of a system initialization script.

With merovingian running in the background managing the databases and their connec-
tions is greatly simplified. After a fresh install the next step would typically be to create
your first database, e.g. demo.

The program monetdb is your aid here. It can create/destroy databases and provides
options to inspect the stability/liveliness of all database servers. Database servers can be
temporarily closed for external access for maintenance, and (to be delivered) support easy
checkpoint and recovery. Let’s create the demo database.

shell> monetdb create demo
successfully created database ’demo’

The status of all database servers can be inspected using:

Chapter 1: General Introduction 22

shell> monetdb status -s
name state uptime crashes
demo stopped 0

This report is helpful to determine possible instabilities and heavy loaded servers. In
this case, it indicates that our database exists, but that no server is running yet.

shell> monetdb start demo
shell> monetdb status

name state uptime crashes
demo running 5s 0

You (the database administrator) can now establish a connection using any of the user
interfaces. The most common one is mclient, which provides a light-weight textual inter-
face. For example, the statements below illustrate a short session. The session is closed
using the mclient console command \q.

shell> mclient -lsql --database=demo
sql>CREATE USER "voc" WITH PASSWORD ’voc’ NAME ’VOC Explorer’ SCHEMA "sys";
sql>CREATE SCHEMA "voc" AUTHORIZATION "voc";
sql>ALTER USER "voc" SET SCHEMA "voc";
sql>\q

See for a more complete session VOC demo.
Once in a while a database should be closed for maintenance. This operation should be

issued with care, because it affects running application. The first step is to block clients to
establish new connections using the command:

shell> monetdb lock demo

The effect is that only the system administrator can gain access to the server. All other
users are warned using the message ’Database temporarily unavailable for maintenance’
upon an attempt to connect.

Step two is to connect as system administrator and inspect the state of all clients con-
nections.

shell> mclient -lsql --database=demo
sql>select * from clients;

If all seem dormant, the server can be shut down. More details are given in the next
section.

After maintenance has been completed, the database server can be opened for connec-
tions using ’monetdb release demo’.

For more details on merovingian and monetdb inspect their manual pages.
NETWORK SECURITY. The final step is to decide on the connection restriction. By

default, the servers only accepts connections from the localhost. To change this policy edit
the MonetDB configuration file. %A database demo can be made worldwide accessible
%using the command ’monetdb public demo’.

1.8.2 Database Dumps

An ascii-based database dump is a safe scheme to transport a database to another plat-
form or to migrate to an (incompatible) new version of MonetDB. This feature is standard
available in mclient.

Chapter 1: General Introduction 23

1.8.3 Server Architecture

Maintenance of the MonetDB servers is based on a clear separation of tasks between multiple
processes, directories, and their dependencies.

The anchor point for MonetDB is a directory (or folder) called the dbfarm. It contains
sub-directories, one for each database. Similar, the database logs and checkpoint anchor
points are dblogs and dbarchive. They should preferably be mounted on different storage
devices.

Access restrictions are inherited from the operating system authorization scheme. It may
proof useful to introduce a separate account for controlling access to MonetDB resources.

1.8.4 Database Configuration

The database environment is described in a configuration file, which is used by server-side
applications, e.g. merovingian and mserver5. A default version is created upon sys-
tem installation in prefix/etc/monetdb5.conf. Below we illustrate its most important
components, for the remaining details look at the configuration file itself.

• prefix=/ufs/myhome/monet5/Linux
• exec prefix=${prefix}
• dbfarm=${prefix}/var/MonetDB5/dbfarm
• monet mod path=${exec prefix}/lib(64)/MonetDB5
• mal init=${prefix}/lib(64)/MonetDB5/mal init.mal
• sql init=${exec prefix }/lib/MonetDB5/sql init.sql
• sql logdir=${prefix}/var/MonetDB5/dblogs
• merovingian log=${prefix}/var/merovingian.log
• mapi open=false

The header consist of system wide information. The prefix and exec prefix describe
the location where MonetDB has been installed. monet mod path tells where to find
the libraries. The bootstrap file for the kernel is given by mal init. These arguments are
critical for a proper working server.

The option sql init is a comma separated list of SQL files to be executed upon system
restart. It is primarily used to make SQL library functions known to all users.

The logs are typically stored on a different storage medium to protect the database
against accidental hardware loss.

Client connections are limited to those originating from the same machine. To make the
database accessible from remote sites the option mapi open should be set to true.

1.8.5 Checkpoint and Recovery

Safeguarding the content of your database against disasters, both hardware and malicious
use, requires carefully planned steps. The first line of defense is to keep the database logs
physically separated from the database store itself, e.g. on different disks. The second line
of defense is to regularly create a database dump or full checkpoint. This is a consolidated
snapshot and should be stored away at a failure independent location, e.g. a vault. Since
a dump is a rather expensive operation, the third line of defense is to keep differential lists

Chapter 1: General Introduction 24

from the last dump based on the update logs. It forms a basis to rollback to a known correct
state.

This part is under review and not realised yet

On Linux platforms the checkpoint and recover operations are provided by the monetdb
toolkit. The process starts with taking a database dump or full checkpoint. It is a DBA
maintenance action. [implemented as a compressed tar file of the dbfarm after consolidation
of all logs]

Taking a checkpoint and its recovery is as simple as:

shell> monetdb checkpoint -f demo
Checkpoint store .../var/MonetDB5/dbarchive
Preparing checkpoint file ’demo/2006-01-02-223704’

A checkpoint should be made at regular intervals or using a crontab job. Stopping a
server triggers a checkpoint being made.

shell> monetdb checkpoint demo
Checkpoint tag defined for ’demo’:2006-01-02-224335

If there appears a need to go back in time a checkpoint date can be selected, whereafter
the database is rolled forward from the latest full checkpoint using the log records.

shell> monetdb recover demo
Checkpoint tags defined for ’demo’
2006-01-02-224335
2006-01-02-224233
...
Specify the checkpoint tag for ’demo’ ? 2006-01-02-224335
Move existing database out of the way ’demo2006-01-02-224416’
Move existing database logs out of the way ’demo2006-01-02-224416’
Restore from store .../var/MonetDB5/dbarchive
Reload checkpoint file ’demo/2006-01-02-224335’
Reload checkpoint log file ’demo/2006-01-02-224335-logs’
Database recovery finished

1.8.6 Detach/Attach Database

A low level approach is to manipulate the directories using the operating system facilities.
The easiest way is to stop the server first. Then, the database directory holding the database
can be copied and stored away. You may want to create a tarball with compressed files and
name them clearly for later recall.

The checkpoint is not complete without the corresponding log files produced by SQL.
They are stored by default in a mirror directory of dbfarm, called dblogs. They should
also be picked up and safeguarded for future use.

On Linux the dbfarm subdirectories can be compressed and stored away for later use.
Restoring a state then simple requires the reverse steps. The main source of errors is to
ensure that components are all based on the same state and that no component is forgotten.

To be sure use the monetdb toolkit attach and detach options for a default. [to be
considered]

Chapter 1: General Introduction 25

1.8.7 Embedded Server

The Embedded Server version is optimized for running on small board computers as a
database back-end for a single client. It is of particular interest if you need database
functionality within a limited application setting, e.g a self-contained database distributed
as part of the application. Within this context, much of the code to facilitate and protect
concurrent use of the kernel can be disabled. For example, locking of critical resources in
the kernel is not needed anymore, which results in significant performance improvements.

The approach taken is to wrap a server such that the interaction between client code
and server can still follow the Mapi protocol. It leads to a C-program with calls to the
Mapi library routines, which provides some protection against havoc behaviour. From a
programming view, it differs from a client-server application in the startup and (implicit)
termination.

You normally only have to change the call mapi connect() into embedded sql()
(or embedded mal()). It requires an optional argument list to refine the environment
variables used by the server. In combination with the header file embeddedclient.h it
provides the basis to compile and link the program.

The behavior of an embedded SQL program can be simulated with a server started as
follows:

mserver5 --set embedded=yes --dbinit="include sql;" &

As a result, the server starts in ’daemon’ mode, loads the SQL support library, and waits
for a connection. Only one connection is permitted.

1.8.7.1 Mbedded Example

A minimalistic embedded application is shown below. It creates a temporary table in the
database, fills it, and retrieves the records for some statistics gathering.

The key operation is embedded sql() which takes an optional environment argument
list. Upon success of this call, there will be a separate server thread running in the same user
space to handle the database requests. A short-circuit interaction is established between
the application and the kernel using in memory buffers.

The body of the program consists of the Mapi calls. It terminates with a call to
mapi disconnect() which lets the MonetDB thread gracefully die.

The tight coupling of application and kernel code also carries some dangers. Many of
the MonetDB data structures can be directly accessed, or calls to the kernel routines are
possible. It is highly advised to stick to the Mapi interaction protocol. It gives a little more
protection against malicious behavior or unintended side-effects.

#include <embeddedclient.h>

#define die(dbh,hdl) (hdl?mapi_explain_result(hdl,stderr): \
dbh?mapi_explain(dbh,stderr): \

fprintf(stderr,"command failed\n"), \
exit(-1))

#define close_handle(X,Y) if (mapi_close_handle(X) != MOK) die(X, Y);

Chapter 1: General Introduction 26

int
main()
{

Mapi dbh;
MapiHdl hdl = NULL;
int i;

dbh= embedded_sql(NULL,0);
if (dbh == NULL || mapi_error(dbh))

die(dbh, hdl);

/* switch off autocommit */
if (mapi_setAutocommit(dbh, 0) != MOK || mapi_error(dbh))

die(dbh,NULL);

if ((hdl = mapi_query(dbh, "create table emp"
" (name varchar(20),age int)")) == NULL || mapi_error(dbh))

die(dbh, hdl);
close_handle(dbh,hdl);

for(i=0; i< 1000; i++) {
char query[100];
snprintf(query, 100, "insert into emp values(’user%d’, %d)", i, i % 82);
if ((hdl = mapi_query(dbh, query)) == NULL || mapi_error(dbh))

die(dbh, hdl);
close_handle(dbh,hdl);

}

if ((hdl = mapi_query(dbh, "select * from emp")) == NULL || mapi_error(dbh))
die(dbh, hdl);

i=0;
while (mapi_fetch_row(hdl)) {

char *age = mapi_fetch_field(hdl, 1);
i= i+ atoi(age);

}
if (mapi_error(dbh))

die(dbh, hdl);
close_handle(dbh,hdl);
printf("The footprint is %d Mb \n",i);

mapi_disconnect(dbh);
return 0;

}

Chapter 1: General Introduction 27

The embedded MonetDB engine is available as the library libembedded sql.a (and
libembedded mal.a) to be linked with a C-program. Provided the programming environ-
ment have been initialized properly, it suffices to prepare the embedded application using

gcc myprog.c -o myprog ‘monetdb5-config --cflags --libs‘

You might also write a Makefile to build the program as follows.[todo]
CC= gcc
INCLUDE=‘monetdb5-config --cflags‘
LIBS=‘monetdb5-config --libs‘
myprog: myprog.o

${CC} myprog.o -o myprog ${LIBS}
myprog.o : myprog.c

${CC} -c ${INCLUDE} myprog.c

clean: myprog.o
rm -f myprog myprog.o

The configuration parameters for the server are read from its default location in the
file system. In an embedded setting this location may not be accessible. It requires calls
to mo add option() before you asks for the instantiation of the server code itself. The
code snippet below illustrate how our example is given hardwired knowledge on the desired
settings:

main(){
opt *set = NULL;
int setlen = 0;

...
if (!(setlen = mo_builtin_settings(&set)))

usage(prog);
...
/* needed to prevent the MonetDB config file from being used */

setlen = mo_add_option(&set, setlen, opt_config, "dbfarm", ".");
setlen = mo_add_option(&set, setlen, opt_config, "dbname", "demo");

...
setlen = mo_system_config(&set, setlen);
mid = embedded_mal(set, setlen);

For a complete picture see the sample program in the distribution.

1.8.7.2 Limitations for Embedded MonetDB

In embedded applications the memory footprint is a factor of concern. The raw footprint
as delivered by the Unix size command is often used. It is, however, also easily misleading,
because the footprint depends on both the code segments and buffered database partitions
in use. Therefore it makes sense to experiment with a minimal, but functionally complete
application to decide if the resources limitations are obeyed.

The minimal static footprint of MonetDB is about 16 Mb (+ ca 4Mb for SQL). After
module loading the space quickly grows to about 60Mb. This footprint should be reduced.

The embedded application world calls for many, highly specialized enhancements. It is
often well worth the effort to carve out the functionality needed from the MonetDB software

Chapter 1: General Introduction 28

packages. The easiest solution to limit the functionality and reduce resource consumption
is to reduce the modules loaded. This requires patches to the startup scripts.

The benefit of an embedded database application also comes with limitations. The one
and foremost limitation of embedded MonetDB is that the first application accessing the
database effectively locks out any other concurrent use. Even in those situations where
concurrent applications merely read the database, or create privately held tables.

Chapter 2: Client Interfaces 29

2 Client Interfaces

Clients gain access to the Monet server through a internet connection or through its server
console. Access through the internet requires a client program at the source, which addresses
the default port of a running server. The functionality of the server console is limited. It is
a textual interface for expert use.

At the server side, each client is represented by a session record with the current sta-
tus, such as name, file descriptors, namespace, and local stack. Each client session has
a dedicated thread of control, which limits the number of concurrent users to the thread
management facilities of the underlying operating system. A large client base should be
supported using a single server-side client thread, geared at providing a particular service.

The number of clients permitted concurrent access is a compile time option. The console
is the first and is always present. It reads from standard input and writes to standard output.

Client sessions remain in existence until the corresponding communication channels
break or its retention timer expires The administrator and owner of a sesssion can ma-
nipulate the timeout with a system call.

There are many user-friendly tools to interact with a SQL database server. A few based
on the JDBC library of MonetDB are included for reference only.

2.1 Mapi Client

The mclient program is the universal command-line tool that implements the MAPI protocol
for client-server interaction with MonetDB.

On a Windows platform it can be started using start->MonetDB->MonetDB SQL Client.
Alternatively, you can use the command window to start mclient.exe. Be aware that your
environment variables are properly set to find the libraries of interest.

On a Linux platform it provides readline functionality, which greatly improves user
interaction. A history can be maintained to ease interaction over multiple sessions.

A mclient requires minimally a language and host or port argument. The default setting
is geared at establishing a guest connection to a SQL or XQuery database at a default server
running on the localhost. The -h hostname specifies on which machine the MonetDB
server is running. If you communicate with a MonetDB server on the same machine, it can
be omitted.

The timer switch reports on the round-about time for queries sent to the server. It
provides a first impression on the execution cost.

Usage: mclient --language=(sql|xquery|mal|mil) [options]

Options are:
-d database | --database=database database to connect to
-e | --echo echo the query
-f kind | --format=kind specify output format dm,xml for Xquery, or csv,tab,raw,sql,xml
-H | --history load/save cmdline history (default off)
-h hostname | --host=hostname host to connect to
-i | --interactive read stdin after command line args
-l language | --language=lang sql,xquery,mal,mil

Chapter 2: Client Interfaces 30

-L logfile | --log=logfile save client/server interaction
-P passwd | --passwd=passwd password
-p portnr | --port=portnr port to connect to
-s stmt | --statement=stmt run single statement
-t | --time time commands
-X | --Xdebug trace mapi network interaction
-u user | --user=user user id
-? | --help show this usage message
-| cmd | --pager=cmd for pagination

SQL specific opions
-r nr | --rows=nr for pagination
-w nr | --width=nr for pagination
-D | --dump create an SQL dump

XQuery specific options
-C colname | --collection=name collection name
-I docname | --input=docname document name, XML document on standard input

The default mapi port TCP port used is 50000. If this port happens to be in use on
the server machine (which generally is only the case if you run two MonetDB servers on
it), you will have to use the -p port do define the port in which the mserver is listening.
Otherwise, it may also be omitted. If there are more than one mserver running you must
also specify the database name -d database. In this case, if your port is set to the wrong
database, the connection will be always redirect to the correct one. Note that the default
port (and other default options) can be set in the server configuration file.

Within the context of each query language there are more options. They can be shown
usin the command \? or using the commandline. For SQL there are several knobs to tune
for a better rendering of result tables (\w).

shell> mclient -lsql --help
\? - show this message
\<file - read input from file
\>file - save response in file, or stdout if no file is given
\|cmd - pipe result to process, or stop when no command is given
\h - show the readline history
\t - toggle timer
\e - echo the query in sql formatting mode
\D table- dumps the table, or the complete database if none given.
\d table- describe the table, or the complete database if none given.
\A - enable auto commit
\a - disable auto commit
\f - format using a built-in renderer csv,tab,raw,sql,xml
\w# - set maximal page width (-1=raw,0=no limit, >0 max char)
\r# - set maximum rows per page (-1=raw)
\L file - save client/server interaction
\X - trace mclient code
\q - terminate session

Chapter 2: Client Interfaces 31

2.1.1 Online help

The textual interface [No value for “mclient”] supports a limited form of online help com-
mands. The argument is a (partial) operator call, which is looked up in the symbol table.
If the pattern includes a ’(’ it also displays the signature for each match. The argument
types and address attributes are also shown if the call contains the closing bracket ’)’.

>?bat.is
bat.isSynced
bat.isCached
bat.isPersistent
bat.isTransient
bat.isSortedReverse
bat.isSorted
bat.isaSet
bat.isaKey
>?bat.isSorted(
command bat.isSorted(b:bat[:any_1,:any_2]):bit
>?bat.isSorted()
command bat.isSorted(b:bat[:any_1,:any_2]):bit address BKCisSorted;
Returns whether a BAT is ordered on head or not.

The module and function names can be replaced by the wildcard character ’*’. General
regulat pattern matching is not supported.

>?*.print()
command color.print(c:color):void
pattern array.print(a:bat[:any_1,:any_2],b:bat[:any_1,:int]...):void
pattern io.print(b1:bat[:any_1,:any]...):int
pattern io.print(order:int,b:bat[:any_1,:any],b2:bat[:any_1,:any]...):int
pattern io.print(val:any_1):int
pattern io.print(val:any_1,lst:any...):int
pattern io.print(val:bat[:any_1,:any_2]):int

The result of the help command can also be obtained in a BAT, using the commands
manual.help. Keyword based lookup is supported by the operation manual.search;
Additional routines are available in the inspect module to built reflexive code.

2.2 Jdbc Client

The textual client using the JDBC protocol comes with several options to fine-tune the
interaction with the database server. A synopsis of the calling arguments is given below

java -jar $prefix/share/MonetDB/lib/jdbcclient.jar \
[-h host[:port]] [-p port] \

[-f file] [-u user] [-l language] [-b [database]] \
[-d [table]] [-e] [-X<opt>]

or using long option equivalents –host –port –file –user –language –dump –echo
–database. Arguments may be written directly after the option like -p50000.

If no host and port are given, localhost and 50000 are assumed. An .monetdb file may
exist in the user’s home directory. This file can contain preferences to use each time the

Chapter 2: Client Interfaces 32

program is started. Options given on the command line override the preferences file. The
.monetdb file syntax is <option>=<value> where option is one of the options host, port,
file, mode debug, or password. Note that the last one is perilous and therefore not available
as command line option. If no input file is given using the -f flag, an interactive session is
started on the terminal.

NOTE The JDBC protocol does not support the SQL DEBUG <query>, PROFILE
<query>, and TRACE <query> options. Use the mclient tool instead. OPTIONS

-h --host The hostname of the host that runs the MonetDB database. A port number
can be supplied by use of a colon, i.e. -h somehost:12345.

-p --port The port number to connect to.

-f --file A file name to use either for reading or writing. The file will be used for writing
when dump mode is used (-d –dump). In read mode, the file can also be an
URL pointing to a plain text file that is optionally gzip compressed.

-u --user The username to use when connecting to the database.

-d --database
Try to connect to the given database (only makes sense if connecting to a
DatabasePool, M5 or equivalent process).

-l --language
Use the given language, for example ’xquery’.

--help This screen.

--version
Display driver version and exit.

-e --echo Also outputs the contents of the input file, if any.

-q --quiet
Suppress printing the welcome header.

-D --dump Dumps the given table(s), or the complete database if none given.

EXTRA OPTIONS

-Xdebug Writes a transmission log to disk for debugging purposes. If a file name is given,
it is used, otherwise a file called monet<timestamp>.log is created. A given file
will never be overwritten; instead a unique variation of the file is used.

-Xembedded
Uses an "embedded" server instance. The argument to this option should be
in the form of path/to/mserver:dbname[:dbfarm[:dbinit]].

-Xhash Use the given hash algorithm during challenge response. Supported algorithm
names: SHA1, MD5, plain.

-Xoutput The output mode when dumping. Default is sql, xml may be used for an
experimental XML output.

-Xbatching
Indicates that a batch should be used instead of direct communication with
the server for each statement. If a number is given, it is used as batch size.

Chapter 2: Client Interfaces 33

I.e. 8000 would execute the contents on the batch after each 8000 read rows.
Batching can greatly speedup the process of restoring a database dump.

2.3 Aqua Data Studio

Aqua Data Studio is a graphical user interface to interact with MonetDB/SQL. It is available
on Windows, Linux, and MacOS platforms from the distribution site. Download the Version
4.7 executable and install the software.

The first step to make Aqua Data Studio aware of MonetDB is to register the data-
base server . Go to the Server->Register Server panel and select the Generic- JDBC
RDBMS theme. It requires the following additional field settings:
Name: MonetDB SQL
Type: Whatever you want
Login Name: monetdb
Password: monetdb
URL jdbc:monetdb://localhost/database
Driver: nl.cwi.monetdb.jdbc.MonetDriver
Driver
Location:

C:\Program Files\CWI\MonetDB\share\MonetDB\lib\monetdb-1.4-
jdbc.jar

The location of the JDBC driver under Linux and OSX is by default
/usr/share/MonetDB/lib/monetdb-1.4-jdbc.jar.

Once the settings has been completed, start the MonetDB server and try to connect. If
necessary extend the heap size of your java engine, e.g. use -Xmx1024M .

Consult your system administrator if other MonetDB user credentials and locality set-
tings are required.

2.4 DbVisualizer

DbVisualizer is a platform independent tool aimed to simplify database development and
management for database administrators and developers. It’s a very cool tool (can even
draw dependency graphs based on the schema and foreign keys.

Free, personal use versions are available from their website. Download and install the
software. The following scheme works for their versions 6.1.

After starting DbVisualizer for the first time, it will load its default welcome screen and
starts the wizard to select database driver. Cancel this wizard and open the Driver Manager,
using the menu Tools->Driver Manager... In the Driver Manager add a new Driver using
Driver->Create Driver... Type the name of the driver in the Name field, e.g. MonetDB.
Type the URL format for the driver: jdbc:monetdb://hostname/database. In the Driver
File Paths box, follow the directions to load a JAR file that contains the JDBC driver. Use
the MonetDB JDBC driver that came with your distribution, typically installed in ${prefix
}/share/MonetDB/lib/monetdb-X.Y-jdbc.jar.

After adding, the window should list the driver class nl.cwi.monetdb.jdbc.MonetDriver
and automatically fills it in in the Driver Class field. Close the Driver Manager window.

From the menu select Database->Create Database Connection. A pop-up dialog will
try to pursue you to use the wizard. You know better so, click "No". Fill in the name
for the connection in the Alias field, e.g. MonetDB. Select the monetdb driver from the

Chapter 2: Client Interfaces 34

list. Copy the default URL by clicking on the "URL Format: ..." text field and change
it to reflect the right hostname (usually localhost will do). Fill in the default userid and
password (monetdb). Press the "Connect" button. It will report the database being used
and the JDBC driver in use. In the left pane the monetdb database now becomes available
from browsing.

Explore the application and have fun!
A caveat of the free-version system is its performance on SQL scripts. They are sent

as a single string to the server for execution. This is not the most optimal situation for
MonetDB. Running a batch script is better started from the MonetDB SQL client.

2.5 SQuirreL

SQuirreL SQL Client is a graphical Java program to view the structure of a JDBC compliant
database, browse the data in tables, issue SQL commands, etc. It’s a very cool tool. It can
even draw dependency graphs based on the schema and foreign keys.

The latest versions is available from their website. Download and install the software.
The following scheme works for version 2.5.

After starting SQuirreL for the first time, it will load its default welcome screen.
Locate the Drivers window and click to add a driver. In the pope’s form enter
the driver name MonetDB, the example URL jdbc:monetdb://localhost/demo,
the website http://monetdb.cwi.nl. Now goto Extra Class Path and add the
MonetDB JDBC driver that came with your distribution, typically installed in
${prefix }/share/MonetDB/lib/monetdb-X.Y-jdbc.jar. Finally, add the class name
nl.cwi.monetdb.jdbc.MonetDriver.

Restart SQuirreL. The MonetDB driver should be marked ok. Create an alias to setup
your first session. Explore the application and have fun!

2.6 iSQL-Viewer

Another open-source graphical user interface is the iSQL-Viewer. It runs on any Java-
enabled platform.

Once installed and started you have the option define a service (or let the system find
one itself). [Ignore the auto detect of services option]

The Tools->Service Manager choice brings up a form to provide the detail for
the MonetDB connections. Click the third button in tool bar and select ’Local
Service’ to define a service Immediately select the tab named ’Resource’ and add
the location of the MonetDB JDBC driver, installed by default in or C:\Program
Files\CWI\MonetDB\share\MonetDB\lib\monetdb-1.4-jdbc.jar under
Windows and and in /usr/share/MonetDB/lib/monetdb-1.4-jdbc.jar under Linux
and OSX

Go back to tab ’General’ and enter the following items:
Connection
Name

MonetDB SQL

JDBC Driver nl.cwi.monetdb.jdbc.MonetDriver
JDBC URL jdbc:monetdb://localhost/database
User name monetdb

Chapter 2: Client Interfaces 35

Password monetdb

Warning, disable the authentication prompt if you can not edit the user and password
fields.

In the Tools->Service Manager->Resource panel enter the location of the Mon-
etDB JDBC driver C:\Program Files\CWI\MonetDB\share\MonetDB\lib\monetdb-
1.4-jdbc.jar

Documentation and tutorial on iSQL-Viewer are available on their website.

2.7 Web Services

2.7.1 Apache Configuration

Here are the instructions to make .xq files directly executable from the Apache web server.

Note: The code provided below is still in an experimental stage and is not intended to
be used in a production environment.

2.7.2 httpd.conf

First you must adapt the httpd.conf configuration file of the Apache web server, in order
to:

• turn on cgi scripts (if not already the case)

• add a "handler" for .xq files:

To do so, I made the following changes:

$ diff -w httpd.conf httpd.conf.default
858c858
> AddHandler cgi-script .cgi

> #AddHandler cgi-script .cgi
885,890d884
< # redirect xquery files to our cgi script
< AddType text/xml .xq
< AddHandler xquery-type .xq
< Action xquery-type /cgi-bin/xquery.cgi

Don’t forget to restart Apache; so it reads httpd.conf

2.7.3 xquery.cgi

In the cgi-bin/ directory, you must also place the following script (xquery.cgi) with
executable file permissions:

chmod 755 xquery.cgi

Beware! You must potentially adapt:

• the location of bash

• wwwdir (the htdocs directory where Apache stores its content)

• monetdir (the installation dir of MonetDB/XQuery)

Chapter 2: Client Interfaces 36

#!/bin/bash
echo ’Content-type: text/xml’
echo

MONETDIR=/path_to_monetdb/
WWWDIR=/var/www/htdocs

XQFILE=$WWWDIR/$REDIRECT_URL

if [x$QUERY_STRING == x]
then

$MONETDIR/bin/mclient --set prefix=$MONETDIR --set exec_prefix=$MONETDIR -fxml -lx $XQFILE
else

‘echo "sed -e s/%$QUERY_STRING/g $XQFILE" | sed -e "s/&/\/g -e s\/%/g" -e "s/=/%\//g"‘ > /tmp/$$
$MONETDIR/bin/mclient --set prefix=$MONETDIR --set exec_prefix=$MONETDIR -fxml -lx /tmp/$$

fi

2.7.4 passing parameters

The xquery.cgi script allows parameter passing. Suppose we have the following XQuery
file (save it as example.xq in the htdocs-folder):
for $i in 1 to %max%
return element { "mult" } {

$i, " times ", %table%, " is ", $i * %table%
}

The table and max have been parametrized. Parameters take the form: %name%

The parameters can be used in the usual URL convention:
@url{http://localhost/example.xq?table=3&max=10,
http://localhost/example.xq?table=3&max=10}

Beware: parameter substitution in this script is very simple; it won’t work with special
characters in it (that get escaped by the web server) or even spaces. For optimal web server
performance, we may want to do all parameter substitution inside mclient; so that we
don’t need to fork a bash shell process on each web request.

2.7.5 Web Service Security

When starting the MonetDB Server, this will open a network port on your system (the
mapi port, configurable in MonetDB.conf, by default 50000). If the database is to be
accessible from the outside, you must modify your firewall configuration to open this port.

Before doing so, take note of the following issues:
• Currently, MonetDB/XQuery lackes proper authentication. There is a single user with

administrative rights and fixed passwords, and the SSL is not available yet. This will
be fixed by the the upcoming version 5 port of MonetDB/XQuery.

• As a stop-gap measure, XML documents that have not explicitly been loaded via
shred doc() (and thus carry a respective alias) are only accessible if the mclient
connection comes from the same machine where Mserver runs (i.e., for clients that

Chapter 2: Client Interfaces 37

run on the local machine). Otherwise, all XML content readable by the user that
started the Mserver process would be visible for the outside.

• Finally, the MonetDB server was not designed with security as a first goal, so may be
susceptible to e.g. buffer overrun attacks. Thus, while in principle users are just able
to execute XQueries, an open port could in the worst case lead to your computer being
hacked.

Warning: As a consequence, anybody logged in to the machine where Mserver runs
can now read documents with the permissions of the user that started Mserver!

Here are the instructions to make .xq files directly executable from a Apache web server.
Note: The code provided below is still in an experimental stage and is not intended to

be used in a production environment.

2.8 httpd.conf

First you must adapt the httpd.conf configuration file of the Apache web server, in order to
a) turn on cgi scripts (if not already the case), and b) add a "handler" for <code>.xq</code>
files. To do so, I made the following changes:
$ diff -w httpd.conf httpd.conf.default
858c858
< AddHandler cgi-script .cgi

> #AddHandler cgi-script .cgi
885,890d884
< # redirect xquery files to our cgi script
< AddType text/xml .xq
< AddHandler xquery-type .xq
< Action xquery-type /cgi-bin/xquery.cgi

Don’t forget to restart Apache; so it reads httpd.conf

2.9 xquery.cgi

In the cgi-bin/ directory, you must also place the following script (xquery.cgi) with exe-
cutable file permissions:</p>
chmod 755 xquery.cgi

Beware! You must potentially adapt:
1. the location of bash
2. WWWDIR(the htdocs directory where Apache stores its content)
3. MONETDIR (the installation dir of MonetDB/XQuery)
#!/bin/bash
echo ’Content-type: text/xml’
echo

MONETDIR=/path_to_monetdb/
WWWDIR=/var/www/htdocs

Chapter 2: Client Interfaces 38

XQFILE=$WWWDIR/$REDIRECT_URL

if [x$QUERY_STRING == x]
then

$MONETDIR/bin/mclient --set prefix=$MONETDIR --set exec_prefix=$MONETDIR -fxml -lx $XQFILE
else

‘echo "sed -e s/%$QUERY_STRING/g $XQFILE" | sed -e "s/&/\/g -e s\/%/g" -e "s/=/%\//g"‘ > /tmp/$$
$MONETDIR/bin/mclient --set prefix=$MONETDIR --set exec_prefix=$MONETDIR -fxml -lx /tmp/$$

fi

2.10 passing parameters

The <code>xquery.cgi</code> script allows parameter passing. Suppose we have the follow-
ing XQuery file (save it as example.xq in the htdocs>-folder):

for $i in 1 to %max%
return element { "mult" } {

$i, " times ", %table%, " is ", $i * %table%
}

The table and max have been parametrized. Parameters take the form: %name% The
parameters can be used in the usual URL convention:

<a href="http://localhost/example.xq?table=3&max=10"
class=’external’>http://localhost/example.xq?table=3&max=10

Beware: parameter substitution in this script is very simple; it won’t work with special
characters in it (that get escaped by the web server) or even spaces. For optimal web server
performance, we may want to do all parameter substitution inside mclient; so that we don’t
need to fork a bash shell process on each web request.

2.11 How to use mclient with the XQuery language?

First start an Mserver, load the pathfinder module, and start listening for MAPI connec-
tions:

% Mserver
...
MonetDB> module("pathfinder");

This was successful if you see the MonetDB server prompt, otherwise you have to
recheck your installation steps and $PATH settings to assure that both the Mserver and
the pathfinder module can be found.

You can now use MAPI to run queries as follows:

shell> mclient -lxquery [file.xq]

The result will be printed on stdout. If you would like to store the result in a file, you
could of course type something like:</p>

shell> mclient -lxquery [file.xq] > [output.xml]

Chapter 2: Client Interfaces 39

2.12 MonetDB Server

2.12.1 Starting MonetDB Server

Simply click: ’Start’ -> ’Programs’ -> ’MonetDB XQuery’ -> ’MonetDB XQuery Server’.
This will start the MonetDB Server with XQuery support in a separate window. Although
the window comes with an interactive prompt, you should (unless you know what you are
doing) keep this window minimized.</p>

2.12.2 Shutting down MonetDB Server

To stop the MonetDB Server, you can simply close the <code>XQuery Server</code> win-
dow. This will stop the server.

2.12.3 MonetDB Client Side

Once you started the MonetDB Server, you can start executing queries and managing your
document collection.

2.12.4 Executing a query

To execute a query; save the query as a file with an .xq extension. Then double-click it. It
will display the result in your default XML-browser. </p>

2.12.5 How to add a document persistently to your collection?

To shred a document into your collection, you should start a mclient MIL session by click-
ing: ’Start’ ->’Programs’ ->’MonetDB XQuery’ ->’mclient MIL Session’. This will open a
MAPI session with the MonetDB Server. On the command-line use the shred doc(full path,
logical name) function to add XML-documents to your collection. Type for instance some-
thing like:

mil>shred_doc("C:\\..\\HelloWorld.xml","HelloWorld.xml");
Shredded XML doc("HelloWorld.xml"), total time after commit=0.084s
mil>

Note: that backslashes ’\’ need to be escaped as ’\\’.

2.12.6 How to delete a document persistently from your
collection?

If you are wondering how you can delete a document from your collection; here is how
to you can delete the "HelloWorld.xml" document that we just added, by referring to its
logical name.

mil>delete_doc("HelloWorld.xml");
mil>

If you want to delete all documents from your collection, type:
mil>delete_all_docs(TRUE);
mil>

to delete only the (implicitely) cached documents, or
mil>delete_all_docs(FALSE);
mil>

to delete also the (explicitely) shredded documents.

Chapter 3: SQL 40

3 SQL

The de facto language for database applications is SQL. It evolved through several phases of
standardization to the version currently known as SQL-2003. The SQL standard provides
an ideal language framework, in terms of standardization committee viewpoints. It is,
however, hardly met by any of the existing (commercial) implementations. This is largely
due to software legacy and backward compatibility requirements from their client base. See
for instance this on-line article on SQL standards.

In 2002 the first version of the SQL front end emerged. This late development made it
possible to immediately start from the SQL’99 definition. As soon as the SQL’03 specifica-
tions became available, its content was taken as the primary frame of reference. The SQL
development strategy is driven by immediate needs of the user base, so that less-frequently
used features end up low on the development stack.

The architecture is based on a separate compiler module, which translates SQL state-
ments into the MonetDB Assembly Language (MAL). In this process common optimization
heuristics, specific to the relational algebra are performed. There are bindings for SQL with
e.g. JDBC, PHP and C, to integrate seamlessly in existing developments environments.

The remainder of this chapter presents a synopsis of the language features. It provides
a quick intro on the scope of the current implementation, mostly through examples. Profi-
ciency in elementary use of SQL is assumed. If you are new to this world then pick up any
of the introduction books and study it carefully, e.g. J. Melton and A.R. Simon, SQL:1999
Understanding Relational Language Components, ISBN 1558604561.

3.1 SQL Core

This section introduces the language components supported. It is not intended to be ex-
haustive, but illustrates the features using programming snippets. For details we refer to
the SQL standard.

Where appropriate the SQL syntax is summarized in extended BNF. Alternative con-
structs are separated by | and grouped by parentheses. Optional parts are marked with
square brackets. A repetition is marked with either ’+’ or ’*’ to indicate at least once and
many times, respectively. Lexical tokens are illustrated in capitals. The syntax is displayed
as text enclosed by a box.

Currently we have partial support for SQL-2003. Features are added when (enough)
users express their interest in these. Some of the features currently not supported are:
• Cursors, because the underlying engine is not based on record iterators.
• Asserts They will be supported in a future release.
• Domains
• Collate
• Character sets
• SQL User Defined Types

The remainder of this chapter provides an overview of the functionality provided. In
most cases it is sufficient to construct complex information systems, and be competitive
with other solutions.

Chapter 3: SQL 41

3.1.1 Syntax

3.1.1.1 Comments

Comments can be added to query scripts for documentation purposes. MonetDB/SQL
supports two forms of comments. Any text beginning with ’- -’ and up to the end of line is
ignored. Furthermore, C-style comments can be injected in a SQL query where a language
token is expected. Comments are considered equivalent to white spaces.

sql>-- this is comment
sql>select /* ignore this */ 3;
+--------------+
| single_value |
+==============+
| 3 |
+--------------+

3.1.1.2 Identifiers and Keywords

SQL comes with a large collection of keywords, i.e. names reserved by the committee to
designate language constructs. Keywords in MonetDB/SQL are case in-sensitive and adhere
to the general convention for identifier denotation in programming languages.

Users can overrule the interpretation of an identifier as a keyword by encapsulation with
double quotes, e.g. select denotes a keyword, while "select" denotes a user defined name.
This scheme also permits inclusion of white space in the names. It is general advisable to
reduce the escaped keywords.

Names are used to designate database objects. In that role, they are case in-sensitive.

3.1.1.3 Literal Constants

Numeric constants follow the convention of most programming languages. A numeric con-
stant that contains neither a decimal point or exponential is considered of type integer.
The underlying engine determines whether it be a 32- or 64-bit value.

String constants in SQL are embraced with single quotes (’\”). They may be split over
multiple lines with blanc space in between.

Often strings can be cast to other types, provided the coercion routine is available. For
example:

CAST (’#ccddee’ AS color)
CAST (’0.3’ AS double)

illustrates conversion of a color value in hexadecimal notation is converted into an inte-
gers, and a value into a double precision floating point number.

3.1.1.4 Special Characters

String literals may contain the traditional escape characters: ’\n’ for new lines, ’\t’ for tab,
’\r’ for return, and ’\\’ for backslash. The conventions ’\ddd‘ with d a digit stands for a
number denoted in octal.

In addition to the comment brackets, SQL reserves several characters to designate com-
mon operators

Chapter 3: SQL 42

+ - * / < > = ! %

The operator definitions can not be overloaded, nor can you define new operators.

3.1.1.5 Operator Precedences

Most operators in SQL have the same precedence and are left-associative. Parenthesis can
be used to disambiguate the precedence order.� �
. left table/column name separator
- right unary minus
^ left exponentiation
* / % left multiplication, division, modulo
+ - left unary addition, subtraction
IS, IS TRUE, IS FALSE, IS
UNKNOWN
ISNULL, NOTNULL test for (not) null
IN set membership
BETWEEN range containment
OVERLAPS time interval overlap
LIKE ILIKE SIMILAR string pattern matching
< > less than, greater than
= right equality, assignment
NOT right logical negation
AND left logical conjunction
OR left logical disjunction‘
 	
3.1.2 Value Expressions

The language is built around value- and table- expressions. Value expressions encompass
denotation of literal constants, type casts, column references, operator and function invo-
cation, and scalar returning subqueries.

The column references take the form� �
<database_name>.<correlation_name>.<column_name>
 	

The default database name is the one identified at the command line while seeking
database access. Omission of the database name and separating dot denotes the session
default database. The database name names the data stored under a schema, possibly
residing at a remote location. (See Distribution.)

The correlation name is either a table name or an alias introduced in a from clause.
The correlation name may be omitted if the columnname uniquely identifies a column in
the scope of current query.

Table expressions produce a relational table. It is internally referenced through correla-
tion name, which supports attribute selection using the ’.’ denotation.

Chapter 3: SQL 43

3.1.3 Data Types

SQL prescribes a large collection of built-in types, most of which are directly supported.
The MonetDB database kernel can also be extended with application specific types.

3.1.3.1 Native Data Types

MonetDB/SQL supports the following types.� �
CHAR[ACTER] (L) character string with length L
VARCHAR (L) | CHARACTER VARYING (L) string with atmost length L
CLOB | CHARACTER LARGE OBJECT
BLOB | BINARY LARGE OBJECT
DECIMAL(P,S) | NUMERIC(P,S)
SMALLINT 16 bit integer
INT 32 bit integer
BIGINT 64 bit integer
serial special 64 bit integer (sequence generator)
REAL 32 bit floating point
DOUBLE [PRECISION] 64 bit floating point
BOOLEAN
DATE
TIME(T) time of day
TIMESTAMP(T) date concatenated with unique time
INTERVAL(Q) a temporal interval
 	

The integer types align with the storage of 2,4, and 8 bytes. Their domain contains a
nil representation, which may cause unexpected side effects if you recast them to a larger
size.

The numeric types are represented as fixed length integers, whose decimal point is pro-
duced during result rendering.

The types float and double map to the underlying implementation system. No special
attention is given to the value NaN.

3.1.3.2 Serial Types

As of 2003 the SQL standard supports serial types. They are of particular use in auto-
generating key values.

A serial type is defined as a primary database object over any of the built-in data types.
The next value operation generates the next value and can be used anywhere a value
expression is allowed. Its name should be unique. It can only be dropped when tables
mentioning it have been previously been dropped.

Chapter 3: SQL 44

� �
CREATE SEQUENCE test_seq AS integer;
...
SELECT NEXT VALUE FOR test_seq;
...
DROP SEQUENCE test_seq;
 	

A more complex example is shown below:� �
CREATE TABLE test (
d date,
id SERIAL,
count int auto_increment,
bla int GENERATED ALWAYS AS IDENTITY (
START WITH 100 INCREMENT BY 2
NO MINVALUE MAXVALUE 1000
CACHE 2 CYCLE)
);
 	

It introduces the column count, which is incremented with each row being added. It is
conceptually identical to the value expression max(count)+1 in each insert. The column
bla is a limited range with wrap around.

Much like other primary database objects, the sequence type can be altered at any time
as illustrated below.� �
sql>CREATE SEQUENCE "my_test_seq" as integer START WITH 2;

sql>CREATE TABLE test (t int DEFAULT

more> NEXT VALUE FOR "my_test_seq", v char);

ALTER SEQUENCE "my_test_seq"

sql>INSERT INTO test(v) VALUES (’a’);

RESTART WITH (SELECT MAX(t) + 1 FROM test);

Rows affected 1

sql>INSERT INTO test VALUES (10, ’b’);

Rows affected 1

sql>ALTER SEQUENCE "my_test_seq"

more> RESTART WITH (SELECT MAX(t) + 1 FROM test);

sql>INSERT INTO test(v) VALUES (’c’);

SELECT * FROM test;

Rows affected 1

sql>SELECT * FROM test;

+----+--+

| t |v |

+====+==+

| 2 |a |

| 10 |b |

| 11 |c |

+----+--+
 	
3.1.3.3 Extended Data Types

The MonetDB kernel supports creation of user defined types, e.g. geometric types. The
relationship between SQL and MAL world is expressed using an external name

Chapter 3: SQL 45

� �
CREATE TYPE <type_name> EXTERNAL NAME <type_identification>;

DROP TYPE <type_name> [RESTRICT | CASCADE];
 	

Dropping types is constrainted. If restrict is set ten the type can only be dropped if no
other database object relies on its definition. If cascade is set, then all objects depending
on the type are dropped as well. Beware, this may result in loss of valuable data.

3.1.4 Table Definition

3.1.4.1 Create Table

The parser currently supports the full <table scope> specifier, but the implementation is
limited to local temporary tables (i.e. the tables are only visible in the client session)
and

Chapter 3: SQL 46

� �
CREATE [TEMPORARY | LOCAL TEMPORARY | GLOBAL TEMPORARY] TABLE <table_name>

table_content_source

[ON COMMIT DELETE ROWS | ON COMMIT PRESERVE ROWS | ON COMMIT DROP]

table_content_source:

(table_element, ...)

| [(<column_name>, ...)] AS select_query [WITH NO DATA | WITH DATA]

table_element:

<column_name> <data_type> [column_option ...]

| CONSTRAINT <constraint_name> table_constraint_type

| <column_name> WITH OPTIONS (column_option, ...)

| LIKE <table_name>

table_constraint_type:

UNIQUE (<column_name>, ...)

| PRIMARY KEY (<column_name>, ...)

| FOREIGN KEY (<column_name>, ...) REFERENCES <table_name> [(<column_name>, ..)]

[match_options] [ref_actions]

column_option:

DEFAULT <default_value>

| [<constraint_name>] column_constraint_type

| GENERATED ALWAYS AS IDENTITY [(serial_parameters)]

| AUTO_INCREMENT

column_constraint_type:

NOT NULL

| NULL

| UNIQUE

| PRIMARY KEY

| REFERENCES <table_name> [(<column_name>, ..)]

[match_options] [ref_actions]

serial_parameters:

[START WITH <nonzero>]

| [RESTART | RESTART WITH subquery | RESTART WITH <nonzero>]

| [INCREMENT BY <nonzero>]

| [MINVALUE <nonzero> | NOMINVALUE]

| [MAXVALUE <nonzero> | NOMAXVALUE]

| [CACHE <nonzero>]

| [CYCLE | NONCYCLE]

match_options:

MATCH FULL | PARTIAL | SIMPLE

ref_actions:

ON UPDATE NO ACTION | CASCASDE | RESTRICT | SET NULL | SET DEFAULT

| ON DELETE NO ACTION | CASCASDE | RESTRICT | SET NULL | SET DEFAULT

| ON DELETE | ON UPDATE

NO ACTION | CASCASDE | RESTRICT | SET NULL | SET DEFAULT

| ON UPDATE | ON DELETE

NO ACTION | CASCASDE | RESTRICT | SET NULL | SET DEFAULT
 	

Chapter 3: SQL 47

3.1.4.2 Default values

To make insert statements easier a default value can be associated with each column. Besides
literal values, temporal and sequence functions can be used as default values. The value of
these functions at insert time will be used.� �
CREATE TABLE <table_name> table_content_source

table_content_source:

(table_element, ...)

table_element:

<column_name> <data_type> [column_option ...]

| <column_name> WITH OPTIONS (column_option, ...)

column_option:

DEFAULT <default_value>
 	
3.1.4.3 Identity Column

SQL-2003 added identity columns, which are columns for which the values are coming from
a sequence generator. The syntax used in MySql (auto increment) and Postgresql (serial
data type) are also supported.� �
CREATE TABLE <table_name> table_content_source

table_content_source:

(table_element, ...)

| [(<column_name>, ...)] AS select_query [WITH NO DATA | WITH DATA]

table_element:

<column_name> <data_type> [column_option ...]

| <column_name> WITH OPTIONS (column_option, ...)

column_option:

| GENERATED ALWAYS AS IDENTITY [(serial_parameters)]

| AUTO_INCREMENT

serial_parameters:

[START WITH <nonzero>]

| [RESTART | RESTART WITH subquery | RESTART WITH <nonzero>]

| [INCREMENT BY <nonzero>]

| [MINVALUE <nonzero> | NOMINVALUE]

| [MAXVALUE <nonzero> | NOMAXVALUE]

| [CACHE <nonzero>]

| [CYCLE | NONCYCLE]
 	
3.1.4.4 Constraints

Column and Table constraints are supported. Besides the simple not null check also
unique, primary and foreign keys are supported. The limitation stems from the missing
triggers, ie we currently check constraints directly on insert, update and delete. The null
matching on foreign keys is limited to the simple match type (null values satisfy the

Chapter 3: SQL 48

constraint). The full and partial match types are not supported. The referential action
is currently limited to restrict, ie an update fails if other columns have references to it.� �
CREATE TABLE <table_name> table_content_source

table_content_source:

(table_element, ...)

table_element:

<column_name> <data_type> [column_option ...]

| CONSTRAINT <constraint_name> table_constraint_type

| <column_name> WITH OPTIONS (column_option, ...)

table_constraint_type:

UNIQUE (<column_name>, ...)

| PRIMARY KEY (<column_name>, ...)

| FOREIGN KEY (<column_name>, ...) REFERENCES <table_name>

[(<column_name>, ..)] [match_options] [ref_actions]

column_option:

[<constraint_name>] column_constraint_type

column_constraint_type:

NOT NULL

| NULL

| UNIQUE

| PRIMARY KEY

| REFERENCES <table_name> [(<column_name>, ..)] [match_options] [ref_actions]

match_options:

MATCH FULL | PARTIAL | SIMPLE

ref_actions:

ON UPDATE NO ACTION | CASCASDE | RESTRICT | SET NULL | SET DEFAULT

| ON DELETE NO ACTION | CASCASDE | RESTRICT | SET NULL | SET DEFAULT

| ON DELETE | ON UPDATE NO ACTION | CASCASDE | RESTRICT | SET NULL | SET DEFAULT

| ON UPDATE | ON DELETE NO ACTION | CASCASDE | RESTRICT | SET NULL | SET DEFAULT
 	
3.1.5 Table Management

3.1.5.1 ALTER and DROP a Table

The alter table is used to add columns or constraints to a specific table. It not only
add them, but it can also be used to drop them. Another possible operation is to alter
the default value of a column. All the syntax explanation for all these operations can be
founded in the subsections Changing a Column, add and drop a Column, ADD and DROP
a Constraint.

To drop a table from a database you must create a drop statement based in the following
syntax:� �
DROP TABLE <table_name> [RESTRICT | CASCADE] ’;’
 	

Chapter 3: SQL 49

3.1.5.2 Changing a Column

The ALTER TABLE statement can be used to set or remove a default value for a column.
The syntax recognized is :� �
ALTER TABLE <table_name> ALTER [COLUMN] <column_name>

SET DEFAULT default_value | NULL ’;’

ALTER TABLE <table_name> ALTER [COLUMN] <column_name>

DROP DEFAULT ’;’
 	
3.1.5.3 ADD and DROP a Column

The alter table statement can be used to add or drop a column from a specific table.
The syntax recognized is:� �
ALTER TABLE <table_name> ADD [COLUMN] <column_name>

<data_type> [column_options] ’;’

ALTER TABLE <table_name> DROP [COLUMN] <column_name>

[RESTRICT | CASCADE] ’;’
 	
3.1.5.4 ADD and DROP a Constraint

The alter table statement can be used to add or drop a constraint from a specific table.� �
ALTER TABLE <table_name> ADD [COLUMN]

[CONSTRAINT <constraint_name>] <constraint_type> ;

ALTER TABLE <table_name> DROP CONSTRAINT <constraint_name>

[RESTRICT | CASCADE] ;

<constraint_type>:

UNIQUE (<column_name>, ...)

| PRIMARY KEY (<column_name>, ...)

| FOREIGN KEY (<column_name> ,...)

REFERENCES <table_name> [(<column_name>,...)]

[MATCH [FULL | PARTIAL | SIMPLE]] [<ref_action>]

| CHECK (<search_condition>)

<ref_action>:

ON DELETE | UPDATE NO ACTION | CASCADE

| RESTRICT | SET NULL | SET DEFAULT
 	
3.1.5.5 CREATE VIEW

Regular view specifications are supported. However, recursive views and reference-able
views are not supported. Next to this 2003 feature we support creating a view on top of
a set of bats. In this case the query expression is replaced by the keyword BATS, and the
bats are found based on the view specification. As this feature requires in-depth knowledge
of the system it is only open to the admin role.

Chapter 3: SQL 50

� �
CREATE VIEW <view_name> [(<column>,...)]

AS <select_query> [WITH CHECK OPTION] ;

DROP VIEW <view_name>;
 	
3.1.5.6 Create Table Like

It is possible to create a table which looks like an existing table. This can be done using the
create table like statement. Currently there is no support for additional options. A work
around is to use the alter statement to change the options.� �
CREATE TABLE <table_name> table_content_source

table_content_source:

(table_element, ...)

table_element:

LIKE <table_name>
 	
3.1.5.7 Create Table AS Subquery� �
CREATE TABLE <table_name> table_content_source

table_content_source:

[(<column_name>, ...)] AS select_query [WITH NO DATA | WITH DATA]
 	
3.1.6 Data Manipulation

3.1.6.1 Insertions

A table can be populated using insert statements. It takes a value expression list. The
values should align with the attributes in the table definition. Otherwise the attribute-value
association should be explicitly defined. Multiple rows can be inserted in a single statement.� �
INSERT INTO <table_name> [(<column_name>, ...)]

[VALUES (<values>,...) , ... | <select_query>]
 	
sql>create table t(i integer, s string);

sql>insert into t values(1, ’cat’),(2,’dog’);

sql>insert into t(s,i) values(’pig’,1+2);

3.1.6.2 Updates

The update statement syntax follows the standard, but it semantics for bulk updates on
keys may be slightly different then in other systems. In particular, the update implementa-
tion ensures that you can freely update any column without the danger of run-away values.

Chapter 3: SQL 51

� �
UPDATE <table_name> SET (assignment, ...) [WHERE <search_condition>]

assignment:

<column_name> = <scalar_exp>

| <column_name> = <search_condition>

| <column_name> = NULL
 	
sql>update t set i= i+1;

sql>select * from t;

sql>select * from t;

% sys.t, sys.t # table_name

% i, s # name

% int, clob # type

% 1, 3 # length

[2, "cat"]

[3, "dog"]

[4, "pig"]

3.1.6.3 Delete

� �
DELETE FROM <table_name> [WHERE <search_condition>]
 	

sql>delete from t where i<3;

3.1.6.4 Copy from/into

The copy from command enables fast insertion of multiple tuples. It takes the input from
an ascii file or stdin. The values and tuples are separated by separators designated by
string constants.� �
COPY [<int_val> RECORDS] INTO <table_name> FROM source_location

[[USING] DELIMITERS <delimiter_name>]

source_location:

(<table_name>, ...)

| STDIN
 	

3.1.7 Queries

3.1.7.1 Table expressions

When a query is created a table can be referenced in different ways, sometimes by its name
or by a select query or a join result. Here is the syntax to refer a table.

Chapter 3: SQL 52

� �
table_ref:

simple_table

| (<select_query>) [AS] <table_name> [(column_name, ...)]

| (<select_query>)

| joined_table

| (joined_table) [AS] <table_name> [(column_name, ...)]

joined_table:

(joined_table)

| table_ref CROSS | NATURAL JOIN table_ref

| table_ref JOIN | UNINONJOIN table_ref join_spec

| table_ref join_type JOIN table_ref join_spec

| table_ref NATURAL join_type JOIN table_ref

join_spec

ON <search_condition>

| USING (<colunm_name>,...)

join_type:

INNER

| LEFT | RIGHT | FULL [OUTER]
 	
3.1.7.2 Select lists, distinct, sorting, limit
� �
SELECT [ALL | EMPTY] selection [INTO <column_name>, ...]

[FROM <table_name>, ...] [WHERE <search_condition>]

[GROUP BY <column_name>, ...] [HAVING <search_condition]

selection:

*

| <column_name>, ...
 	
3.1.7.3 With expressions

The with clause provides the mechanism to introduce in-line view definitions as exemplified
by the following example:� �
WITH with_element, ... <select_query>

with_element:

<table_name> (<column_name>, ...) AS (<select_query>)
 	
WITH t AS (

SELECT * FROM tables)

SELECT * FROM t;

3.1.7.4 String Operations

The syntax supported for the string operations which can be used in SQL queries.

Chapter 3: SQL 53

� �
string_funcs:

SUBTRING (scalar_exp FROM scalar_exp FOR scalar_exp)

| SUBTRING (scalar_exp, scalar_exp, scalar_exp)

| SUBTRING (scalar_exp FROM scalar_exp)

| SUBTRING (scalar_exp, scalar_exp)

| SUBTRING (scalar_exp <int_value> scalar_exp)

| scalar_exp CONCATSTRING scalar_exp
 	
3.1.7.5 Pattern Matching Operations

The pattern matching operations are used over predicates. It is possible to compare them,
see the differences between them, if a predicate is a sub-predicate of another, etc. The
following syntax description cover all the operations supported by MonetDB.� �
predicate:

comparison_predicate

| between_predicate

| like_predicate

| test_for_null

| in_predicate

| all_or_any_predicate

| existence_test

| ’(’ predicate ’)’

comparison_predicate:

pred_exp COMPARISON pred_exp

| pred_exp = pred_exp

between_predicate:

pred_exp [NOT] BETWEEN [SYMMETRIC | SYMMETRIC] pred_exp AND pred_exp

like_predicate:

pred_exp [NOT] LIKE atom_exp

test_for_null:

<column_name> IS [NOT] NULL

in_predicate:

pred_exp [NOT] IN (<element_name>, ...)

all_or_any_predicate

pred_exp COMPARASION ANY | ALL | SOME <subquery>

existence_test:

[NOT] EXISTS <subquery>

pred_exp:

scalar_exp

| predicate

atom_exp:

[(] atom [)]

| [(] atom [)] ESCAPE <string>

| ?
 	

Chapter 3: SQL 54

3.1.7.6 Date/Time Functions and Operators

Operations over date and time are supported and the syntax recognized is:� �
datetine_func:

EXTRACT (datatime_field FROM scalar_exp)

| CURRENT_DATE [()]

| CURRENT_TIME [()]

| CURRENT_TIMESTAMP [()]

| LOCALTIME [()]

| LOCALTIMESTAMP [()]

| CURRENT_TIME [()]

datetime_field:

YEAR | MONTH | DAY | HOUR | MINUTE | SECOND
 	
3.1.7.7 Logical and Comparison Operators

The logical operators supported are the OR, AND, NOT, FALSE, and TRUE. They are
used for example in a query with a search condition.

The syntax for logical operators is used in the search condition of a query, and the syntax
recognized is:� �
search_condition:

search_condition OR search_condition

| search_condition AND search_condition

| NOT search_condition

| FALSE

| TRUE
 	
The comparison operators are the <>, <, >, =, >=, and <=. They are used for example

in a query with a comparison predicate. The syntax recognized is:� �
comparasion_predicate:

pred_exp COMPARASION pred_exp

| pred_exp = pred_exp
 	
>SELECT name FROM table1, table2 WHERE (id = 1 OR age > 0)

AND NOT FALSE AND name <> ’monet’;

3.1.7.8 Mathematical Functions and Operators

Several mathematical functions and operators are supported by MonetDB.

Chapter 3: SQL 55

� �
simple_scalar_expression:

scalar_exp + scalar_exp

| scalar_exp - scalar_exp

| scalar_exp * scalar_exp

| scalar_exp / scalar_exp

| scalar_exp % scalar_exp

| + scalar_exp %prec UMINUS

| - scalar_exp %prec UMINUS

| (scalar_exp)

scalar_exp:

simple_scalar_expression

| (<select_query>) %prec UMINUS
 	
3.1.7.9 Aggregate Functions

The aggregate functions supported are AVG, MIN, MAX, SUM, and COUNT. The syntax
for these aggregations is:� �
aggregation_def:

AGGR (*)

| AGGR (ident . *)

| AGGR (DISTINCT <column_name>)

| AGGR (ALL <scalar_exp>)

| AGGR (<scalar_exp>)
 	
3.1.7.10 SubQueries

MonetDB supports queries nested into another query. To this queries we call sub-queries.
>CREATE TABLE table1 (id int, name varchar(1024));

>CREATE TABLE table2 (id int, age int);

>INSERT INTO table1 values(1, ’monetdb’);

>INSERT INTO table2 values(0, 23);

>INSERT INTO table2 values(1, 25);

>SELECT name FROM table1 WHERE id IN (SELECT id FROM table2);

% sys.table1 # table_name

% name # name

% varchar # type

% 7 # length

["monetdb"]

>

3.1.8 Indexes

The index statements in the SQL standard are recognized, but their implementation is
different from competitive products. MonetDB/SQL interprets these statements as advice
and often freely neglects its, relying on its own decision to create and maintain indexes for
fast access.� �
CREATE [UNIQUE] INDEX <index_name> ON <table_name> (<column_name>, ...) ;

DROP INDEX <index_name>;
 	

Chapter 3: SQL 56

3.1.9 Functions

The SQL standard allows you to create SQL functions and MonetDB support it. The syntax
to create a function is:� �
CREATE FUNCTION <func_name> [(<param_name> <data_type>, ...)]

RETURNS func_data_type EXTERNAL NAME <external_func_name> ;

CREATE FUNCTION <func_name> [(<param_name> <param_type>, ...)]

RETURNS func_data_type routine_body ;

func_data_type:

<data_type>

| TABLE (<column_name> <data_type>, ...)

;

routine_body:

procedure_statement

| BEGIN procedure_statement_list END

| BEGIN ATOMIC procedure_statement_list END

;

procedure_statement:

transaction_statement

| update_statement

| schema

| grant

| revoke

| create_statement

| drop_statement

| alter_statement

| declare_statement

| set_statement

| control_statement

| select_statement_single_row

;

control_statement:

call_statement

| while_statement

| if_statement

| case_statement

| return_statement

;
 	
To drop a function the syntax is:� �

DROP FUNCTION <func_name> [(parameters_type_list)] [CASCADE | RESTRICT] ;

DROP ALL FUNCTION <func_name> [CASCADE | RESTRICT] ;
 	
Note: If you do not specify the full signature of the function the DROP query will

successfully executed if there is only one function with this name, if not the query is aborted.
The DROP ALL is used to drop all the functions with the name specified in the query.

Chapter 3: SQL 57

3.1.10 Transactions

MonetDB/SQL supports a multi-statement transaction scheme marked by start trans-
action and closed with either commit or rollback. The session variable auto commit
can be set to true if each SQL statement should be considered an independent transaction.

The transaction management scheme is based on the optimistic concurrency control
scheme. It provides each transaction with a consistent view on the database, but updates
are collected in an addendum processed on transaction commit. If at commit time it can
be assured that the data prepared for update affects tables not changed in the mean time,
the results are merged.

This scheme is particularly useful for query dominant environments. It negatively affects
long running transactions which concurrently are affected by updates on their underlying
tables.� �
START TRANSACTION;

...

SQL_STATEMENTS;

...

COMMIT; | ROLLBACK;
 	
3.1.11 Schema Management

The scheme operations follow the standard definition.� �
CREATE SCHEMA <schema_name>

| AUTHORIZATION <auth_identifier>

| <schema_name> AUTHORIZATION <auth_identifier>

[DEFAULT CHARACTER SET <char_set>] ;

DROP SCHEMA <schema_name> [RESTRICT | CASCADE] ;
 	
creation, public, search path, privileges system catalog

3.1.11.1 Database Roles

To define Database roles you should create your SQL statement base in the following syntax:� �
CREATE ROLE <role_name>

[WITH ADMIN CURRENT_USER |

WITH ADMIN CURRENT_ROLE] ;

DROP ROLE <role_name>;
 	
Note: By default the admin is the current user.

3.1.11.2 Privileges

3.1.11.3 Locale

3.1.12 Database Management

creation, destruction of the database

Chapter 3: SQL 58

3.1.12.1 Backup and Recovery

The monetdb script supports creation and restores of the database.
Alternatively, the database is stored by default in the directory (folder) dbfarm. Taking

a snapshot of this directory is a save scheme to backup your database, provided you have
first stopped its server.

3.1.12.2 Managing the Logs

The transaction logs are assembled in a database log directory whose location by default is
next to dbfarm. The monetdb script supports its management and the guardian program
watches over the disk resource usage.

3.1.12.3 Monitoring Resources

The guardian process keeps an eye on the amount of free disk space and space occupied
by the log files. If a high-water mark is reached, it will inform the database administrator
through an email message.

3.1.13 Client Authorization

To create a user in the Database you should use the following syntax:� �
CREATE USER <user_name>

WITH PASSWORD <user_password>

NAME <name> SCHEMA <schema_name";

ALTER USER <user_name>

[WITH PASSWORD <user_password>]

[SET SCHEMA <new_schema_name>];

DROP USER <user_name>;
 	
It can also be used to modify the user password or/and the default schema.

3.1.14 Catalog Inspection

The meta-information about the database objects is stored in a number of tables and internal
data structures. They are updated through the create, alter and drop statements. They
are available for inspection using a readonly copy or a materialized view.

Each session has a private copy of the catalog. Updates become effective at transaction
commit only. <?niels when are the results visible to other users?>

3.1.14.1 Session Variables

MonetDB/SQL supports session variables declared by the user. They are indistinguishable
from table and column names and can be used anywhere a literal constant is allowed.

sql>DECLARE high integer;
sql>DECLARE n varchar(256);
sql>SET high=4000;
sql>SET n=’monetdb’;
sql>SELECT count(*) from tables where id > high;
+--------+

Chapter 3: SQL 59

| count_ |
+========+
| 2 |
+--------+

The SQL variables (and environment variables) can be accessed through predefined table
returning functions var() and env(). The initial state is something like:

>select * from var() as v;
TO BE FILLED

• The debug variable takes an integer and sets the server global debug flag (See MonetDB
configuration documentation file). It also activates the debugger when the query is
being executed.

• The profile variable takes a boolean and when set collects execution statistics on the
SQL queries executed in the table profile.

• The trace variable takes a boolean and when set lists the execution timing of all MAL
instructions to solve the SQL query.

• The cache variable takes a boolean and when set SQL uses a query cache to speed up
subsequent calls to identical (up to constants) queries.

• The optimizer variable takes a string. It controls the query optimizers, see Chapter 3
[SQL Reference], page 40.

3.1.14.2 Environment Tables and Views

All the information of the catalog can is stored in tables. There are also some views over
these tables to join some useful information about the several database objects existent in
a MonetDB database.

To see all the environment and views tables you can consult the view tables.
for all tables and views:

>SELECT name from tables;

to select only the tables:

>SELECT name from tables where type = 0;

["schemas"] Table with all information about schema (name, authorization, owner).

["types"] Table with all the types existent and created by the user.

["functions"] Table with all functions existent and created by the user.

["args"] Table wich contains all the arguments for all the functions in the system.

["sequences"] Table with all information about the sequences created by the user.

["_tables"] Table with all information about tables and views on the system (there is an-

other for the temporary schema).

["_columns"] Table with all information about the columns for the existent tables (they also ex-

ist for the temporary schema).

["keys"] This table together with the table idx and keycolumns contain all the information

["idxs"] about the constraints created over tables or columns (there is another for the tem-

porary schema).

["triggers"] Table with all information about the existent triggers (there is an-

other for the temporary schema).

["keycolumns"] Table with columns which are a Primary key or Foreign Key (there is an-

other for the temporary schema.

["dependencies"] This table contains all the dependencies between several database objects.

["connections"] Table with all information about connection to remote catalogs.

["db_user_info"] This table together with user_role table contains all the information

["user_role"] about all users.

Chapter 3: SQL 60

["auths"] This table together with privileges contains all the information about

["privileges"] privilegies and authorizations for all users.

["profile"] This table contains profile information about query executions for each user.

to select only the views:

>SELECT name from tables where type = 1;

["tables"] View over the system and the temporary tables table.

["columns"] View over the system and the temporary columns table.

["users"] View over the system and the temporary users table.

3.1.14.3 Environment Functions

3.1.14.4 Query Cache

SQL statements are translated a query cache retained for re-use. The cache can be inspected
and manipulate with the following predefined SQL functions.
show cache() lists the content of the query cache and statistics of

the call behavior
explain cache(qryname)list the query plan for a given query
drop cache(qryname)remove a specific plan from the cache
clear cache() removes all cached query plans

3.1.14.5 Administrator Functions

3.2 SQL Runtime Features

The MonetDB SQL implementation provides a few primitives to simplify profiling and
debugging of SQL queries. They are described separately.

3.2.1 EXPLAIN Statement

The intermediate code produced by the SQL compiler can be made visible using the ex-
plain statement modifier. It gives a detailed description of the actions taken to produce
the answer. The example below illustrates what you can expect when a simple query is
prepended by the explain modifier. The details of this program are better understood
when you have read the Chapter on Chapter 5 [MAL Reference], page 97.
sql>select count(*) from tables;
+--------+
| count_ |
+========+
| 27 |
+--------+
sql>explain select count(*) from tables;
+--+
| function user.s1_1():void; |
| _1:bat[:oid,:int]{notnil=true,rows=0:lng,bid=1728} := |
| sql.bind("tmp","_tables","id",0); |
| constraints.emptySet(_1); |
| _10:bat[:oid,:sht]{notnil=true,rows=0:lng,bid=1732} := |
| sql.bind("tmp","_tables","type",0); |

Chapter 3: SQL 61

| _13:bat[:oid,:int]{notnil=true,rows=30:lng,bid=854} := |
| sql.bind("sys","_tables","id",0); |
| _15:bat[:oid,:int]{notnil=true,rows=0:lng,bid=1588} := |
| sql.bind("sys","_tables","id",1); |
| constraints.emptySet(_15); |
| _15:bat[:oid,:int]{notnil=true,rows=0:lng,bid=1588} := nil; |
| _16:bat[:oid,:int]{notnil=true,rows=0:lng,bid=1589} := |
| sql.bind("sys","_tables","id",2); |
| constraints.emptySet(_16); |
| _16:bat[:oid,:int]{notnil=true,rows=0:lng,bid=1589} := nil; |
| _20:bat[:oid,:sht]{notnil=true,rows=30:lng,bid=860} := |
| sql.bind("sys","_tables","type",0); |
| _8{rows=0:lng} := algebra.markT(_1,0@0); |
| _9{rows=0:lng} := bat.reverse(_8); |
| _8{rows=0:lng} := nil; |
| _12{rows=0:lng} := algebra.join(_9,_10); |
| _10:bat[:oid,:sht]{notnil=true,rows=0:lng,bid=1732} := nil; |
| _18{rows=30:lng} := algebra.markT(_13,0@0); |
| _19{rows=30:lng} := bat.reverse(_18); |
| _18{rows=30:lng} := nil; |
| _21{rows=30:lng} := algebra.join(_19,_20); |
| _20:bat[:oid,:sht]{notnil=true,rows=30:lng,bid=860} := nil; |
| _22{rows=31:lng} := bat.setWriteMode(_21); |
| _21{rows=30:lng} := nil; |
| bat.append(_22,_12,true); |
| _12{rows=0:lng} := nil; |
| _26{rows=31:lng} := algebra.uselect(_22,nil:sht,2,false,false); |
| _22{rows=31:lng} := nil; |
| _29{rows=31:lng} := algebra.markT(_26,0@0); |
| _26{rows=31:lng} := nil; |
| _30{rows=31:lng} := bat.reverse(_29); |
| _29{rows=31:lng} := nil; |
| _31{rows=0:lng} := algebra.join(_9,_1); |
| _9{rows=0:lng} := nil; |
| _1:bat[:oid,:int]{notnil=true,rows=0:lng,bid=1728} := nil; |
| _32{rows=30:lng} := algebra.join(_19,_13); |
| _19{rows=30:lng} := nil; |
| _13:bat[:oid,:int]{notnil=true,rows=30:lng,bid=854} := nil; |
| _33{rows=31:lng} := bat.setWriteMode(_32); |
| _32{rows=30:lng} := nil; |
| bat.append(_33,_31,true); |
| _31{rows=0:lng} := nil; |
| _35{rows=31:lng} := algebra.join(_30,_33); |
| _30{rows=31:lng} := nil; |
| _33{rows=31:lng} := nil; |
| _36{rows=31:lng} := algebra.markT(_35,0@0); |
| _35{rows=31:lng} := nil; |

Chapter 3: SQL 62

| _37{rows=31:lng} := bat.reverse(_36); |
| _36{rows=31:lng} := nil; |
| _38{rows=1:lng} := aggr.count(_37); |
| _37{rows=31:lng} := nil; |
| sql.exportValue(1,"sys.","count_","int",32,0,6,_38,""); |
| end s1_1; |
+--+
sql>

The SQL compiler keeps a limited cache of queries. Each query is looked up in this cache
based on an expression pattern match where the constants may take on different values. If
it doesn’t exist, the query is converted into a code block and stored in the module user.s0.

The call to the cached function is included in a wrapper function main, which is the only
piece of code produced if the query is used more than once. The query cache disappears
when the server is brought to a halt.

+----------------------------+
| function user.main():void; |
| mdb.start(); |
| user.s3_1(); |
| mdb.stop(); |
| end main; |
+----------------------------+

3.2.2 PROFILE Statement

The SQL implementation comes with a simple profiler to learn about the expensive queries.
The profiler is controlled by the boolean session variable profile. The snippet below
illustrates its use:

sql> set profile= true;
...

sql>select * from profile;
+----------------------+--------------------+------+------+-----+------+--------+
| start |query |parse |optim |exec |total |user |
| | | |ize | | | |
+======================+====================+======+======+=====+======+========+
2007-08-14	select * from	305	738	161	1204	monetdb
19:38:23.000000	profile;					
2007-08-14	select * from	306	728	233	1267	monetdb
19:38:28.000000	profile;					
2007-08-14	select count(*)	779	802	200	1781	monetdb
19:38:39.000000	from tables;					
+----------------------+--------------------+------+------+-----+------+--------+

It illustrates the wall-clock time the query was started, the query itself, followed by the
wall-clock timing obtained for the parser, the optimizer, the execution phase and the total
execution time (in microseconds). The final column indicates the user responsible for this
request.

Chapter 3: SQL 63

3.2.3 DEBUG Statement

The SQL statements are translated into MAL programs, which are optimized and stored
away in an user module. The generated code can be inspected with the MAL debugger. It
provides a simple mechanism to trace the execution, hunting for possible errors and detect
performance bottlenecks (Section 8.5 [Runtime Inspection], page 144).

The example below illustrates the start of such a session:
>debug select count(*) from tables;
mdb.start()
mdb>next
user.s1_0()
mdb>next
_2:bat[:oid,:int] := sql.bind(_3="sys", _4="ptables", _5="id", _6=0)
mdb>next
_8:bat[:oid,:int] := sql.bind(_3="sys", _4="ptables", _5="id", _9=1)
mdb> ...

3.2.4 TRACE Statement

Inspection of the execution time of the query plan uses the debugger facilities to time each
request. The example below illustrates the trace statement modifier to obtain a first
glimpse on the expensive components of the query plan.
sql>trace select count(*) from tables;
+-------------+--+
2 usec	mdb.setTimer(_2=true)
22 usec	_1:bat[:oid,:int] := sql.bind(_2="tmp", _3="_tables",
	_4="id", _5=0)
13 usec	constraints.emptySet(_1=<tmp_3300>bat[:oid,:int]{0})
11 usec	_10:bat[:oid,:sht] := sql.bind(_2="tmp", _3="_tables",
	_11="type", _5=0)
12 usec	_13:bat[:oid,:int] := sql.bind(_14="sys", _3="_tables",
	_4="id", _5=0)
11 usec	_15:bat[:oid,:int] := sql.bind(_14="sys", _3="_tables",
	_4="id", _6=1)
10 usec	constraints.emptySet(_15=<tmp_3064>bat[:oid,:int]{0})
11 usec	_15:bat[:oid,:int] := nil;
10 usec	_16:bat[:oid,:int] := sql.bind(_14="sys", _3="_tables",
	_4="id", _17=2)
9 usec	constraints.emptySet(_16=<tmp_3065>bat[:oid,:int]{0})
9 usec	_16:bat[:oid,:int] := nil;
11 usec	_20:bat[:oid,:sht] := sql.bind(_14="sys", _3="_tables",
	_11="type", _5=0)
39 usec	_8 := algebra.markT(_1=<tmp_3300>bat[:oid,:int]{0}, _7=0@0)
13 usec	_9 := bat.reverse(_8=<tmp_3512>bat[:oid,:oid]{0})
10 usec	_8 := nil;
28 usec	_12 := algebra.join(_9=<~tmp_3512>bat[:oid,:oid]{0},
	_10=<tmp_3304>bat[:oid,:sht]{0})
10 usec	_10:bat[:oid,:sht] := nil;

Chapter 3: SQL 64

15 usec	_18 := algebra.markT(_13=<tmp_1526>bat[:oid,:int]{30},
	_7=0@0)
9 usec	_19 := bat.reverse(_18=<tmp_3520>bat[:oid,:oid]{30})
9 usec	_18 := nil;
55 usec	_21 := algebra.join(_19=<~tmp_3520>bat[:oid,:oid]{30},
	_20=<tmp_1534>bat[:oid,:sht]{30})
10 usec	_20:bat[:oid,:sht] := nil;
42 usec	_22 := bat.setWriteMode(_21=<tmp_3506>bat[:oid,:sht]{30})
9 usec	_21 := nil;
11 usec	bat.append(_22=<tmp_3506>bat[:oid,:sht]{30},
	_12=<tmp_3412>bat[:oid,:sht]{0}, _24=true)
15 usec	_12 := nil;
32 usec	_26 := algebra.uselect(_22=<tmp_3506>bat[:oid,:sht]{30},
	_27=nil:sht, _25=2, _28=false, _28=false)
16 usec	_22 := nil;
15 usec	_29 := algebra.markT(_26=<tmp_3453>bat[:oid,:oid]{27},
	_7=0@0)
10 usec	_26 := nil;
9 usec	_30 := bat.reverse(_29=<tmp_3506>bat[:oid,:oid]{27})
8 usec	_29 := nil;
15 usec	_31 := algebra.join(_9=<~tmp_3512>bat[:oid,:oid]{0},
	_1=<tmp_3300>bat[:oid,:int]{0})
13 usec	_9 := nil;
9 usec	_1:bat[:oid,:int] := nil;
30 usec	_32 := algebra.join(_19=<~tmp_3520>bat[:oid,:oid]{30},
	_13=<tmp_1526>bat[:oid,:int]{30})
12 usec	_19 := nil;
8 usec	_13:bat[:oid,:int] := nil;
26 usec	_33 := bat.setWriteMode(_32=<tmp_3522>bat[:oid,:int]{30})
9 usec	_32 := nil;
10 usec	bat.append(_33=<tmp_3522>bat[:oid,:int]{30},
	_31=<tmp_3366>bat[:oid,:int]{0}, _24=true)
11 usec	_31 := nil;
22 usec	_35 := algebra.join(_30=<~tmp_3506>bat[:oid,:oid]{27},
	_33=<tmp_3522>bat[:oid,:int]{30})
17 usec	_30 := nil;
14 usec	_33 := nil;
15 usec	_36 := algebra.markT(_35=<tmp_3366>bat[:oid,:int]{27},
	_7=0@0)
10 usec	_35 := nil;
10 usec	_37 := bat.reverse(_36=<tmp_3522>bat[:oid,:oid]{27})
9 usec	_36 := nil;
9 usec	_38 := aggr.count(_37=<~tmp_3522>bat[:oid,:oid]{27})
17 usec	_37 := nil;
+-------------+--+	
27	
+-------------+--+

Chapter 3: SQL 65

21 usec	sql.exportValue(_6=1, _40="sys.", _41="count_", _42="int",
	_43=32, _5=0, _44=6, _38=27, _45="")
1646 usec	user.s3_1()
+-------------+--+

3.2.5 Optimizer Control

The code produced by MonetDB/SQL is massaged by several code optimizers to arrive at
the best possible plan for evaluation. However, for development purposes and the rare case
that more control is needed, the SQL session variable optimizer can be set to a list of
optimizers to identify the steps needed.

sql>set optimizer=’costModel,coercions,emptySet’;
sql>select optimizer;
+------------------------------+
| single_value |
+==============================+
| costModel,coercions,emptySet |
+------------------------------+

The default SQL optimization sequence is defined as:

inline Inline functions identified as such.
remap Locate hardwired multiplex operations.
costModel Inspects the SQL catalog for size information.
coercions Performs static coercions.
emptySet Removes all empty set expressions
accessmodes Ensures that BATs for update are writeable.
aliases Remove alias assignments.
commonterms Hunts for common terms and retains one only.
accumulators Re-uses BATs to hold the result of an arithmetic expression.
joinPath Searchs multiple joins and glues them together for better optimization.
deadcode Remove all code not leading to used results.
reduce Reduces the stack space for faster calls.
garbageCollector Injects calls to the garbage collector to free up space.
multiplex Expand all remaining multiplex operations to iterators.

The final result of the optimizer steps become visible using the explain statement
modifier. Alternatively, the debug statement modifier in combination with the ’o’ command
provides access to the intermediate optimizer results.

3.3 SQL programming

SQL has grown to become a full-fledged programming language, which permits applications
to safely run complex code within server. The downside of this flexibility is an increase in
server load.

MonetDB/SQL supports server side programming through the standards for SQL per-
sistent modules, triggers, and direct binding to external functions.

Chapter 3: SQL 66

3.3.1 Persistent Stored Modules

The persistent stored modules definitions are collected in text files. They should be loaded
through the client interface as part of a session start.

The distribution comes with a few sample modules
query cache() table produces a list of all cached queries.
bbp() table produces a list of all known BATs.

3.3.2 Triggers

Triggers are a convenient programming abstraction. They are activated at transaction
commit based on updates to the base tables.

The following example provides a glimpse of their functionality:
create table t1 (id int, name varchar(1024));

--test FOR EACH STATEMENT (default one)
insert into t1 values(10, ’monetdb’);
insert into t1 values(20, ’monet’);
create trigger test5

after update on t1
for each statement
when id >0 insert into t1 values(4, ’update_when_statement_true’);

All trigger definitions are considered together at the transaction commit. There is no a
priori defined order in which they run. Each may in turn activate new triggers, but each
trigger definition is also executed only once per transaction commit.

3.3.3 External Functions

External functions provide a convenient bridge between SQL and MAL. This way also a
bridge can be established with dynamically loaded functions written in C. Any SQL function
signature can be bound to MAL function or command.

The example below illustrates a binding to the a function that produces a tabular over-
view of the BAT catalog.

CREATE FUNCTION bbp ()
RETURNS TABLE (id int, name string, htype string,

ttype string, count BIGINT, refcnt int, lrefcnt int,
location string, heat int, dirty string, status string,
kind string)

EXTERNAL NAME sql.bbp;

A table returning function should be implemented as MAL function that returns a series
of synchronized BATs.

function bbp():bat[:str,:bat];
b := bat.new(:str,:bat,12);
ns := bbp.getNames();
ri := algebra.markT(ns, 0:oid);

...
kind := algebra.markH(ikind, 0:oid);

Chapter 3: SQL 67

bat.insert(b, "kind", kind);
return b;

end bbp;

Two MsSQL functions are also supported by MonetDB SQL. The functions supported
are ’STUFF’ and ’ROUND’. The functionality of both functions can be achived by calling
the function with the prefix MS .

>MS_ROUND(10.0, 1, 0);

The SQL definition for MS ROUND is:
CREATE FUNCTION MS_ROUND(num float, precision int, truncat int)
RETURNS float
BEGIN
IF (truncat = 0)
THEN RETURN ROUND(num, precision);
ELSE RETURN TRUNCATE(num, precision);
END IF;
END;

The SQL definition for MS STUFF is:
CREATE FUNCTION MS_STUFF(s1 varchar(32), st int, len int, s3 varchar(32))
RETURNS varchar(32)
BEGIN
DECLARE res varchar(32), aux varchar(32);
DECLARE ofset int;
SET ofset = 0;
SET res = SUBSTRING(s1,ofset,st-1);
SET res = res || s3;
SET ofset = LENGTH(s1)-len;
SET aux = SUBSTRING(s1,ofset, len);
SET res = res || aux;
RETURN res;
END;

Chapter 4: XQuery 68

4 XQuery

MonetDB/XQuery provides a full-fledged XQuery implementation, which adheres to all the
typing rules prescribed in the W3C standard. It is constructed as an independent compiler,
producing code for the MonetDB server back-end. Preliminary experiments against a well-
known benchmark show its supreme performance and scalability in processing individual
documents. Interactive query processing of large XML documents has finally become within
reach.

The following W3C material is recommended:

• W3C XQuery 1.0 now full standard recommendation.

• W3C XPath 2.0 the XML navigation sub-language, common to both XQuery and
XSLT.

• W3C XQuery Functions and Operators provides an overview of all built-in functions.

• W3C XQuery Update Facility is a proposal in-the-works for updating XML documents.

Additional W3C reference material:

W3C XML Schema 2.0 note that schema support in MonetDB/XQuery is untested at
this point.

• W3C XQuery Serialization defines how XML documents should be converted to text.

• W3C XQuery Formal Semantics formally defines the behavior of all XQuery language
constructs.

MonetDB/XQuery is based on technology originally developed within the Pathfinder
project, at the University of Konstanz and is now pursued at the Technische Universit Mu-
nich, CWI Amsterdam and the University of Twente. A detailed account of this technology
can be found on the Pathfinder website.

The documentation provided here is organized by feature area:

• Section 4.3 [Document Management], page 71 section Adding XML documents to
a database, as well as deleting them, is not yet covered by the W3C. Thus, Mon-
etDB/XQuery provides its own interface for such tasks.

• Section 4.4 [Supported Functions], page 75 section describes which features from the
various W3C standard recommendations have been implemented, and which not. You
will find that MonetDB/XQuery is very standard-conformant already at this stage.

• Section 4.5 [Prepared Queries], page 77 to accelerate repetitive fast-running queries, are
a well-known feature in SQL databases. MonetDB/XQuery uses XQuery user-defined
functions, defined in library modules (standard features in W3C XQuery 1.0) to bring
the benefits of prepared queries also to XML database systems.

• Section 4.6 [StandOff Extensions], page 79 introduce new XPath steps to ease querying
of XML documents with so-called region-annotations. The decision to extend a W3C
standard is not taken lightly, and was only done after users from widely different
backgrounds found these extensions critical. Also, these extensions are turned off by
default and need to be actived explicitly by starting the MonetDB/XQuery server with
the –set standoff=enable command-line switch.

Chapter 4: XQuery 69

• 〈undefined〉 [XRPC Extension], page 〈undefined〉 is a minimal yet orthogonal exten-
sion for the XQuery language that adds the function shipping facility to XQuery by
intoducing a single statement.

• Section 13.5 [The JDBC Library], page 242 describes how users and application pro-
grammers can interact with MonetDB/XQuery, either by invoking the the mclient
utility on XQuery scripts, or by querying the MonetDB/XQuery server from a client
program. We also describe how to use MonetDB/XQuery as XML database backbone
behind a web server.

4.1 XQuery Overview

The success of XML(Extensible Markup Language) as a universal file format is still unbro-
ken. Processing high volumes of XML documents, however, requires efficient means to store
and query the data. XQuery, derived from both Xpath and SQL technology, has become
the target for unlocking their potential for XML-based applications.

An XQuery processor is either developed from scratch, or exploits the decades of exper-
tise in managing relational databases. The latter road has been followed in the Pathfinder
research project, in which techniques are developed to benefit from modern database tech-
nology.

The vehicle for this approach is the MonetDB system with a proven track record in
high performance database processing. MonetDB/XQuery is constructed as a front end
solution that can handle multi-gigabyte XML> documents. Its implementation supports a
substantial subset of XQuery’s functionality; remaining features will follow.</p>

The MonetDB/XQuery system requires the installation of just two components: the
MonetDB server and the XQuery compiler, which translates the expressions into MonetDB’s
intermediate language (MIL). The download section contains prepackaged versions for a
variety of platforms.

Quality assurance is guaranteed using the stringent and automated testing of all products
in the MonetDB <!–#include virtual=" ROOTDIR /Development/TestWeb/link.shtml" –
>. The testing section provides an outlook on the results of last night’s builds, but is also
a good source for small examples of the system’s functionality.</p>

MonetDB/XQuery is a joint-effort of University of Munich (T.Grust, J. Teubner, J.
Rittinger), University of Twente (M. van Keulen, J. Flokstra), and CWI (P. Boncz, S.
Manegold, S. Mullender, Y. Zhang, N. Nes). Detailed technology information is organized
in the separate Pathfinder project website. Contributions to maintenance and further im-
provements are highly appreciated.

The research focus and development efforts in the Pathfinder project are scalability and
standards compliance. The packaging of the software aims at sharing our experiences and
speeding up further research in this key technology area. MonetDB/XQuery is released
under the Pathfinder Public License Version 1.1.

4.1.1 Database Scalability

The last decades of research brought us database management systems that store, retrieve
and process huge amounts of data efficiently. They have been developed and implemented
for various data models, though the relational model is by far the most popular and suc-
cessful one.

Chapter 4: XQuery 70

The Pathfinder research effort pushes this development a step further and provides ef-
ficient relational database support for XML data (and its query language XQuery). The
benchmark section illustrates the story in more detail.

4.1.2 Standard Compliance

The XQuery language has been defined without a strong existing user base or existing
software solutions. This led to a clean design, but also one where many typing features
greatly impact the implementation effort. The nature of the XQuery language is quite
different from, e.g., the relational database processing model, which makes this translation a
challenging task. Many research and commercial XQuery prototypes sacrifice some features
to allow for an efficient translation.

Through careful design, our compiler still sticks to the XQuery working drafts.
The heart of the Pathfinder compiler is a translation approach that correctly copes with
all important aspects of XQuery. The Research section contains more information on our
compilation approach.

4.2 Tractable Interfaces

An XQuery implementation based on database back-end technology calls for a translation
of the expressions into a low-level or algebraic intermediate language. This translation, and
subsequent parsing and optimization, brings a fixed cost per query and can certainly be
improved. But in the current state of technology, it provides a clear handle on debugging.
Query caching often amortizes the cost of this performance-wise less preferable coupling.

4.2.1 Pathfinder Project

The Pathfinder research project has been initiated by the Database & Information Systems
Group at the University of Konstanz, Germany.

All key people (the group of prof. dr. Torsten Grust) relocated in 2005 to the Technical
University of Munich where the project continues unabated.

It is now a joint project with the database groups at CWI, Amsterdam, and the Univer-
sity of Twente, Enschede, The Netherlands.

The project strives for a full XQuery implementation, backed by modern database tech-
nology. As such, the techniques allow for effective optimizations and scalability to multi-
gigabyte volumes of XML data.

The software implementation of these techniques is the open-source system
MonetDB/XQuery. As an XQuery front end to MonetDB, the implementation compiles
queries in the XQuery language into a relational equivalent. After applying various
optimization techniques, the relational query is then sent as a MIL program (the low-level
interface language to MonetDB) to the back-end database. After execution on the
MonetDB back-end, the result is serialized back into an XML format to be returned to the
user.

This XQuery compiler is distributed as a separate software package. The software in-
cludes the stand-alone XQuery compiler pf, as well as a server plug-in for MonetDB (the
pathfinder extension module that contains the compiler and thus allows for server-side
XQuery processing on MonetDB. The stand-alone compiler is mainly targeted people from
the research community that want to look "under the hood" of MonetDB/XQuery. Users

Chapter 4: XQuery 71

that just want to have a functional XQuery implementation will typically stick to the instant
XQuery compilation provided by the pathfinder extension module.

4.3 Document Management

The MonetDB/XQuery database system manages a Document Collection. Users can Add
Documents and Remove Documents to this collection by hand, giving them a logical name.
Even without this, MonetDB/XQuery can query any XML document on the web for which
you know a working URL. In that case, the document is automatically imported at query-
time, and a Cache Policy determines whether and how long it stays in the database.

This page describes the interface for managing the document collection and the caching
policy. These features are not covered by the W3C XQuery language itself, however. There-
fore, for the moment, the management of these features is handled in MonetDB/XQuery
through some special commands added to the MIL algebra, that can either be typed into
the Mserver console directly, or using the mclient interface.

The upcoming release contains new XQuery builtin functions integrated in the update
framework to allow document management to be performed using XQuery statements.

4.3.0.1 Document Collection

we can print the current document collection by:

mil> xmldb_print();
#---#
alias URI size # name
str str lng # type
#---#
["auctions.xml", "http://www.cwi.nl/~boncz/xmark//auctions.xml", 589824]
["music.xml", "http://www.cwi.nl/~boncz/music/music.xml", 3276800]
mil>

In this case, two XML documents happen to be loaded. All documents have an alias
(the logical name) and an uri (the physical name). The size printed is the database file
storage space it occupies in bytes.

Documents are shredded either

• explicitly (as explained at the start), using the MIL command shred doc("URI","alias");

• or because a query executed the XQuery function fn:doc("uri") and the Section 4.3
[Cache Policy], page 73 of MonetDB/XQuery determined that this document should
stay in the cache; so it stayed there even after query execution ended (for automatically
cached documents, the alias is identical to the URI).

In the former case, the document stays in the database until the point that it is explic-
itly removed with delete doc(name), where name may be either the URI or the alias.
The delete all docs(cachedOnly) deletes all documents if passed false and only the
automatically cached ones if passed true.

4.3.0.2 Add Document

For example, to add the document HelloWorld.xml, to the database try the following:

Chapter 4: XQuery 72

shell> mclient -lmil
Monet Database Server V4.8.2
Copyright (c) 1993-2005, CWI. All rights reserved.
Compiled for i686-redhat-linux-gnu/32bit; dynamically linked.
Visit http://monetdb.cwi.nl/ for further information.
mil>shred_doc("/.../HelloWorld.xml","HelloWorld.xml");
mil>\q

Using the MIL language switch of mclient you directly interact with the server using the
proprietary MonetDB server language. The command line returns with a language specific
prompt. On this prompt you can type the MIL-code and to quit mclient, you simply press
the Ctrl-D key combination or backslash-q.

Note: all statements in MIL have to be terminated with a ’;’ (semi-colon).

Note: you don’t have to start a new MAPI session for each document you want to shred.
You can simply call shred doc(physical name, logical name) again during the same
session.

A copy of the original document is now part of your persistent collection. The second
argument of shred doc is its logical name, which should be unique within the collection.
Now we are able to issue XQuery queries on the document in our collection using its logical
name:

doc("HelloWorld.xml")

Note: that issueing this XQuery should be done with mclient in XQuery mode (i.e.
with option -lxquery instead of -lmil).

4.3.0.3 Remove Document

You can delete the "HelloWorld.xml" document from the collection using its logical name.

shell> mclient -lmil
Monet Database Server V4.8.2
Copyright (c) 1993-2005, CWI. All rights reserved.
Compiled for i686-redhat-linux-gnu/32bit; dynamically linked.
Visit http://monetdb.cwi.nl/ for further information.
>delete_doc("HelloWorld.xml");
>\q

The query doc("HelloWorld.xml") won’t work anymore and returns an error mes-
sage accordingly.

If you wish to delete all documents from the collection, type:

> delete_all_docs(true);
>

to delete only cached documents, or

> delete_all_docs(false);
>

to delete also the (explicitely) shredded documents.

Chapter 4: XQuery 73

4.3.0.4 Cache Policy

The document cache holds recently accessed XML documents. It is persistent accross
Mserver sessions. There is a caching policy that determines whether and until when a
document that is loaded by an executing XQuery will stay in the cache.

An important parameter is the size of the cache. It is controlled by the
xquery cacheMB variable in the MonetDB.conf file. This value is in megabytes
(MB). From MIL, you can inspect (but not modify) these settings using:

mil> env();
#---#
h t # name
str str # type
#---#
["config", "/home/boncz/MonetDB/Linux/etc/MonetDB.conf"]

...lines omitted...

["mapi_port", "50000"]

...lines omitted...

["xquery_output", "dm"]
["xquery_cacheMB","100"]
mil>

To modify the settings, edit the MonetDB.conf file. Its exact filepath location is listed
under "config" in the same table.

Apart from the cache size, there are rules that control the behavior of the document
cache. A general rule is that MonetDB/XQuery always caches file URIs. The system uses
the last-modified timestamp of the filesystem to guarantee that when a query is run, the
cached document is actual (if it has changed on disk, the document is removed from the
cache automatically, and is shredded anew).

Other caching lifetime-rules can be added explicitly with the xml-
cache add rule("URI-prefix", seconds); command. Such a rule states that
all documents whose URI starts with the specified prefix should be cached for a maximum
amount of seconds (in case of multiple lifetime rules prefix-matching and URI, the longets
match counts).

Such rules are persistent and remain in place until explicitly revoked with
xmlcache del rule("URI-prefix");. The currently active set of lifetime rules can be
inspected with:

mil> xmlcache_print_rules();
#---------------------------------#
URI-prefix liftime-secs # name
str lng # type
#---------------------------------#
mil>

no rules, currently!

Chapter 4: XQuery 74

Below an example of how to add two lifetime rules:
• cache all HTTP URIs for 5 minutes.
• cache all documents from http://www.cwi.nl for a month.
mil> xmlcache_add_rule("http://", 300);
mil> xmlcache_add_rule("http://www.cwi.nl", 30*24*60*60);
mil> xmlcache_print_rules();
#---#
URI-prefix liftime-secs # name
str lng # type
#---#
["http://", 300]
["http://www.cwi.nl", 2592000]
mil>

4.3.0.5 Miscellaneous

MonetDB/XQuery offers a few other functions that might turn out to be useful. The
function signatures are shown using sigs("pathfinder");.

Sigs:
mil> sigs("pathfinder");
#---#
signature # name
str # type
#---#
["shred_doc(str, str) : void"]
["xmldb_print() : void"]
["delete_doc(str) : void"]
["delete_all_docs(bit) : void"]

.. lines omitted ...

["xmlcache_print() : void"]
["xmlcache_print_rules() : void"]
["xmlcache_add_rule(str, any) : void"]
["xmlcache_del_rule(str) : void"]
mil>

The above MIL commands are the interface for managing the document collection, as
explained below. You may also try help("command"); to get a summary for each com-
mand:

mil> help("xmldb_print");
PROC: xmldb_print() : void
MODULE: pathfinder
COMPILED: by boncz on May 2005
DESCRIPTION:
shows the actual content of the persistent XML document database (not the XML document cache).

Chapter 4: XQuery 75

This consists of all documents explicitly shredded with shred_doc(URI, alias).
mil>

4.4 Supported Functions

MonetDB/XQuery supports a wide range of the built-in functions described in the W3C
specifications. Here is a list of functions that MonetDB/XQuery currently supports. Some
functions are not yet implemented, while others probably won’t be implemented in the near
future.</p>

yes Order Awareness MonetDB/XQuery correctly implements document
and sequence orders, as well as node identity.

yes XPath Location Steps
MonetDB/XQuery implements XQuery’s full axis feature, i.e., we sup-
port all 12 XPath axes. Note, however, that we do not support node
tests on type annotations as introduced with newer XQuery drafts.

yes FLWOR clauses We support FLWOR clauses with full generality and
arbitrary nesting, including positional variables.

yes Arithmetics, Logics, Conditionals We support arithmetics, logics (and,
or), and conditionals (some/every, if-then-else).

partly Node Construction We fully support element, attribute, and text con-
structors, at arbitrary nesting depth. We have not implemented docu-
ment, comment and processing-instruction constructors, yet.

yes Namespaces MonetDB/XQuery fully supports namespaces.

yes Schema Import MonetDB/XQuery implements the Schema Import fea-
ture. This is not well tested, though.

partly Module Import MonetDB/XQuery implements the Module Import fea-
ture, however its handling of recursive module imports is non-standard.
Most importantly, the W3C formal semantics specify that if a query (or
a module) imports a module, only the variables and functions directly
defined by that module will become visible to it. In MonetDB/XQuery,
though, all namespaces, variables and functions that were imported by
that module, will become visible. Thus MonetDB/XQuery may en-
counter clashes (leading to errors), e.g. in namespace identifiers, or
funtion signature or variable names, that should not occur according
to the formal semantics.

partly XQuery Built-In Functions We support a large set of built-in functions,
as listed in our Function Library. We
currently do not support functions that involve specific collation orders,
as well as functions that involve date/time conversions.

Chapter 4: XQuery 76

yes User-Defined Functions MonetDB/XQuery correctly deals with user-
defined functions, with or without recursion. Current development ef-
forts will lead to an even more efficient implementation that completely
eliminates function call overhead.

partly Simple Types We currently support the XQuery simple types
<tt>xs:integer</tt>, <tt>xs:decimal</tt>, <tt>xs:double</tt>,
<tt>xs:string</tt>, and <tt>xs:boolean</tt>. Note that we currently
implement <tt>xs:decimal</tt> as a floating point number which may
lead to rounding errors.

yes Static Typing MonetDB/XQuery supports the Static Typing feature.
(For experts: we actually support structural typing here, using An-
timirov’s algorithm.)

no Dynamic Typing Our implementation of XQuery’s typeswitch clause
is still very limited. We currently allow type tests that can be decided
at compile time, and tests for atomic types. Note that the lack of
dynamic typing may also limit XQuery’s casting functionalities.

no Validation
MonetDB/XQuery does not yet support validation,
though work is underway to close that gap.

MonetDB/XQuery supports a wide range of the built-in functions described in the W3C
specifications. This section provides an overview is of functions that MonetDB/XQuery
currently supports.

The function library has been organized as follows:

Aggregation functions (min,max, ..).
supported: 6/8 Missing functions are all collation specific, See 〈undefined〉
[XQuery Aggregation], page 〈undefined〉.

Numeric computation functions (+ -, ..).
supported: 18/20 No support yet of round-half-to-even, See 〈undefined〉
[XQuery Numeric], page 〈undefined〉.

Boolean logic or comparison functions (and, >, ..).
supported: 9/13 We miss deep-equal and binaryEqual variants, See 〈unde-
fined〉 [XQuery Boolean], page 〈undefined〉.

String functions (substring, ..).
supported: 21/32 We miss collation-speific versions as well as normalize-
unicode and tokenize, See 〈undefined〉 [XQuery String], page 〈undefined〉.

Node functions (root, doc, ..).
supported: 17/23, See 〈undefined〉 [XQuery Node], page 〈undefined〉.

Sequence functions (first, last, ..).
supported: 11/19 No support for collection yet, See 〈undefined〉 [XQuery
Sequence], page 〈undefined〉.

URI functions (base-uri, escape-uri, ..).
supported: 2/10 We only have namespace-uri, See 〈undefined〉 [XQuery URI],
page 〈undefined〉.

Chapter 4: XQuery 77

QName functions (node-name, resolve-QName, ..).
supported: 0/6 Not supported yet, See 〈undefined〉 [XQuery QName], page 〈un-
defined〉.

Runtime functions(error, trace ..).
supported: 0/5 Not supported yet, See 〈undefined〉 [XQuery Runtime],
page 〈undefined〉.

Date/Time functions(date-equal, time-less-than, ..).
supported: 0/75 Not supported yet, See 〈undefined〉 [XQuery Date/Time],
page 〈undefined〉.

We encourage new Developers to volunteer and help fill in these blanks. Work has started
on adding date/time functions but help is surely welcome.

4.5 Prepared Queries.

MonetDB/XQuery has support for modules. It helps XQuery users to structure their query
code, but are also the instrument for MonetDB/XQuery to implement canned queries.

4.5.1 XQuery Modules

The below shows a simple example of an XQuery module test.xq, that just defines a single
function countDescendants("uri"):

module namespace test = "http://monetdb.cwi.nl/XQuery/Documentation/Language/Modules/";

declare function test:countDescendants($doc as xs:string) as xs:integer
{

count(doc($doc)//*)
};

You may type import module inside an XQuery query, after which you can use the
functions (and variables) defined in it:

import module namespace test = "http://monetdb.cwi.nl/XQuery/Documentation/Language/Modules/"
at "http://monetdb.cwi.nl/XQuery/Documentation/Language/Modules/test.xq";

test:countDescendants("http://monetdb.cwi.nl/xmark/auctions.xml")

which basically does the same as the ad-hoc query, namely counting how many nodes
the XMark document has:

count(doc("http://monetdb.cwi.nl/xmark/auctions.xml")//*)

Warning: while highly similar, the module feature as implemented by MonetDB/XQuery
deviates in the following respects from the XQuery formal semantics:
• You must give a location hint in the "import module" statement. Each file hinted

there will be loaded as a module. It has to match the namespace given in the "import
module" statement, though.

• Modules cannot see variables declared in other modules, regardless if they imported
the module theirselves or not. A module is not allowed, though, to override variable
declarations of other modules (conforming to the specs).

• Modules will see functions defined in other modules. They are not allowed to override
them, though.

Chapter 4: XQuery 78

• All modules and the main query share the same type definitions. So modules will see
XML Schema definitions imported by the main query. (see also below for XML Schema
import)

• Pathfinder does allow cyclic importing of modules, regardless of their namespace.
• The XQuery specifications state that two module import statements that use the same

target namespace should produce an error. This is not the case in MonetDB/XQuery:
the module will be loaded once, but its functions and variables will be available under
both namespace identifiers.

4.5.2 Prepared Queries using Functions from Modules

In SQL databases, interfaces like ODBC or JDBC allow to prepare prepared queries for
faster execution of frequently used query patterns. For example, web-sites powered by a
database usually generate a fixed set of queries to that database; each page fires off the same
(set of) queries, possibly though with different parameters (that contain e.g. a customer
identity or cookie). SQL systems can prepare for such prepared queries in advance, such
that when a web-page is served out and the query result is needed quick, only the actual
parameters need to be fed (bound) into a ready-to-run query (saving query parsing and
optimization time, which is unavoidable for ad-hoc queries).

Such prepared queries can be seen as a queries whose result is a function of a number
of parameters. MonetDB/XQuery takes this definition literally in its implementation of
prepared queries:

prepared query = XQuery function

XQuery modules allow to define XQuery functions (and variables, but that’s beside the
point now). So:
• if a XQuery consists of only a function call, and
• that function is defined not inside the query itself, but inside a module (so there’s an

import module statement preceding the function call), and
• the query parameters are simple constants (atomic values of type xs:integer,

xs:decimal, xs:double, or xs:string)

then MonetDB/XQuery will execute this query much faster, making use of a prepared
query plan.

To put the caching mechanism to the test, first import the XMark document into the
database by typing in the MonetDB console:

mil> shred_doc("http://monetdb.cwi.nl/xmark/auctions.xml",
"http://monetdb.cwi.nl/xmark/auctions.xml");

then run the queries q.xq (standard), m.xq (function from module) while monitoring
elapsed time:

shell> mclient -lx -t q.xq
1729

Trans 18.000 msec
Shred 0.000 msec
Query 5.000 msec
Print 0.000 msec

Chapter 4: XQuery 79

Timer 24.436 msec

shell> mclient -lx -t m.xq
1729

Trans 0.000 msec
Shred 0.000 msec
Query 2.000 msec
Print 0.000 msec
Timer 2.778 msec

We see that the latter "prepared" query (that uses a function defined in a module)
performs almost ten times faster than the ad-hoc query! The translation time has completely
disappeared for the prepared query m.xq and the query execution also improved by a factor
of two.

This performance trend was confirmed on the XMark benchmark. We developed pre-
pared queries for the benchmark, which produced a factor 10 (small 116KB documents) to
2 (larger 10MB documents) performance increase over the ad-hoc benchmark queries. Ob-
viously, complex queries or queries on huge (>=GB) documents, which take many seconds
to run anyway, do not benefit from prepared query mechanism (but neither are hindered
by it).

As a general rule, the benefit of canned queries is larger for short-running than for long-
running queries, because for short-running queries the XQuery translation and optimization
time weighs in more heavily. We especially recommend the use of canned queries when
MonetDB/XQuery is used to power web-sites.

4.6 StandOff Extensions

XML is often used to store annotations (i.e. meta-data, data describing other data). In
particular, XML Standoff Annotation, concern annotations that annotate some object that
itself is not included in the XML document. Such StandOff annotation often refers to
regions in this object. We support a form of XML annotations that denotes these regions
as XML node attributes called start and end.

Consider, for example, a video file (documentary) annotated as follows:
<sample>
<video>
<scene id="Intro" start="0" end="800"/>
<scene id="Interview" start="801" end="10400"/>
<scene id="Outro" start="10401" end="13400"/>
</video>
<music>
<song artist="Beatles" start="0" end="4500"/>
<song artist="Bach" start="10000" end="13000"/>
</music>
</sample>

On the above example XML file (multimedia case), one may want to ask which music
was played during the interview. In that case, we want song elements whose regions overlap

Chapter 4: XQuery 80

with the Interview shot. Without StandOff extensions, such queries are tedious to express
in XQuery, and perform very slowly.

with StandOff extensions, the query can be posed as follows:

doc("example.xml")//scene[@id="Interview"]/select-wide::song

Note the select-wide is an extension of the XPath (and thus XQuery) syntax.

4.6.1 Extended XPath Steps for Region Querying

The StandOff axis steps, similar in behavior to the standard XPath steps (e.g. child::*,
descendant::*) have been added to MonetDB/XQuery to make querying concurrent such
region really easy.

• /select-narrow::

• /select-wide::

• /reject-narrow::

• /reject-wide::

• Axis steps will always be ’local’ e.g. will only yield matches from the same document
(fragment).

• Each node is only returned once (no duplicates) and in document order.

4.6.1.1 context/select-narrow::nodename

From the set of nodes with nodename ‘nodename’, say: {n1, n2...}, return only the nodes
contained in the context nodes (e.g. return n if there is a context node for which holds:
context start <= n start and n end <= context end)

4.6.1.2 context/select-wide::nodename

From the set of nodes with nodename ‘nodename’, say: {n1, n2...}, return only the nodes
overlapping with the context nodes (e.g. return n if there is a context node for which holds:
context start <= n end and n start <= context end)

4.6.1.3 context/reject-narrow::nodename

From the set of nodes with nodename ‘nodename’, say: {n1, n2...}, return all BUT the
nodes contained in the context nodes (e.g. return n if there is NO context node for which
holds: context start <= n start and n end <= context end)

4.6.1.4 context/reject-wide::nodename

From the set of nodes with nodename ‘nodename’, say: {n1, n2...}, return all BUT the
nodes overlapping with the context nodes (e.g. return n if there is NO context node for
which holds: context start <= n end and n start <= context end)

4.6.2 Availability

The steps have been made available in MonetDB/XQuery next to the regular XPath axis.
The StandOff steps have been turned off by default as they do not follow the XQuery
recommendation as set by the W3C. To enable the steps you need to start the database
server (Mserver) with the option –set standoff=enable.

Chapter 4: XQuery 81

Inside the server, the StandOff steps are implemented efficiently using sophis-
ticated interval-join algorithms, as well as a temporal index. Both are employed
automatically by MonetDB/XQuery, without need of user or DBA intervention. The
http://www.cwi.nl/htbin/ins1/publications?request=intabstract&key=AlBhVrBo:XIMEP:06">XIME-P
2006 paper from our scientific library gives technical background on these StandOff
extensions.

4.6.3 Why Extending the XPath Standard?

We have found a surprising wide variety of XML data owners to have region annotations:
• Standoff In Multimedia: XML that holds the output of video scene detection or

speech recognition tools (etc.). Used in various kinds of content-based multimedia
search/browsing systems.

• Standoff In Forensic: XML describing interesting features discovered on confiscated
hard drives (e.g. person names, addresses, emails, recovered file hierarchies, etc..).
The regions refer to the positions on disk where the features where found. Used in
computer-assisted crime scene investigations (CSI).

• Standoff In NLP: XML describing the grammatical structure of natural texts. Inline
annotation cannot be used because natural language is ambiguous, and multiple parses
are often possible. Thus structure is separated from content, and refers to it by word
position. Used in automatic question answering systems.

• Standoff In Bio-Informatics: XML storing DNA sequences annotated by genome re-
search groups. The regions refer by position in the DNA strands. The annotations
may contain clinical characteristics of patients or hold additional biomolecular data on
those genes. Used in collaborative genome research efforts.

If you have similar XML data and use MonetDB/XQuery to manage this, please contact
us on the mailing list.

For XQueries with such region overlap/containment conditions, other XML database
systems resort to query plans that have to compare all pairs of regions ("quadratic complex-
ity"). On XML data sizes above a few hundred KB, this quickly systems become unusably
slow. In contrast, MonetDB/XQuery with StandOff extensions runs bio-informatics queries
on gigabytes of XML annotations within a few seconds.

4.7 XRPC Extension

The XQuery 1.0 language only provides a data shipping model for querying XML documents
distributed on the Internet. The built-in function fn:doc() fetches an XML document
from a remote peer to the local server, where it subsequently can be queried. The recently
published W3C working draft of XQuery Update Facility (XQUF) introduces the built-in
function fn:put() for remote storage of an updated document, which again implies data
shipping.

To equip XQuery with function shipping style distributed querying abilities, we introduce
XRPC. XRPC is a minimal yet powerful XQuery extension that enables efficient distributed
querying of heterogeneous XQuery data sources. XRPC enhances the existing concept of
XQuery functions with the Remote Procedure Call (RPC) paradigm. By calling out of an
XQuery for-loop to multiple destinations, and by calling functions that themselves perform
XRPC calls, complex P2P communication patterns can be achieved.

Chapter 4: XQuery 82

The XRPC extension is orthogonal to all XQuery features, including XQUF. Hence, in
all places where a function application is allowed by the XQuery 1.0 language, an XRPC
function call can be placed. All functions defined in an XQuery module can be called
remotely, provided that both the caller and the callee of the function have access to the same
module definition file. All XQUF updating expressions1 can be included in the definition
of an updating XQuery module function, which then can be called with XRPC.

The XRPC extension is enabled by default in MonetDB/XQuery. It is compiled together
with the pathfinder module. XRPC has two major components, a request handler (module
xrpc_server) and a message sender (module xrpc_client). Both module are loaded when
the module pathfinder is loaded in Mserver.

4.7.1 XRPC Syntax

Remote function applications take the XQuery syntax:
execute at {Expr}{FunApp(ParamList)}

where Expr is an XQuery expression that specified the URI of the peer on which the
function FunApp is to be executed.

For a precise syntax definition, we show the rules of the XQuery 1.0 grammar that were
changed:
PrimaryExpr ::= ... | FunctionCall | XRPCCall | ... XRPCCall ::= "execute at" "{" ExprSing "}" "{" FunctionCall "}" FunctionCall ::= QName "(" (ExprSingle("," ExprSingle)*)? ")"

We restrict the function application FunApp to user-defined functions that are defined
in a module. Thus, the defining parameters of an XRPC call are: (i) a module URI, (ii) a
function name, and (iii) the actual parameters (passed by value). The module URI is the
one bound to the namespace identifier in the function application. The module URI must
be supplemented by a so-called at-hint, which also is a URI.

The current choice to allow functions defined in XQuery modules is due to efficiency
and security reasons. MonetDB/XQuery has the mechanism of caching the query plan of
a module. For all subsequent use of the functions in a cached module, only the function
parameters need to be extracted to be feed directly into the query plan. For security reason,
by allowing only modules, it is trivial to specify which modules are allowed to be executed
or not.

It is important to know that actual parameters of the called function are passed by value
(in contrary to by reference), which implies that if an XML node is passed as a parameter
of an XRPC call, only its subtree is serialised in the request message and sent to the remote
site.

4.7.2 XRPC Call Examples

As a running example, we assume a set of XQuery database systems (peers) that each store
a film database document "filmDB.xml" with contents similar to:

<films>
<film>

<name>The Rock</name>
<actor>Sean Connery</actor>

</film>

1 The transform expression is not supported yet.

Chapter 4: XQuery 83

<film>
<name>Goldfinger</name>
<actor>Sean Connery</actor>

</film>
<film>

<name>Green Card</name>
<actor>Gerard Depardieu</actor>

</film>
</films>

We assume an XQuery module "film.xq" stored at "example.org", that defines a function
filmsByActor():

module namespace film="films";

declare function film:filmsByActor($actor as xs:string) as node()*
{ doc("filmDB.xml")//name[../actor=$actor] };

We can execute this function on remote peer "x.example.org" to get a sequence of films
in which Sean Connery plays in the remote movie database:

import module namespace f="films" at "http://example.org/film.xq";

<films> { (Q1)
execute at {"x.example.org"} {f:filmsByActor("Sean Connery")}

} </films>

Above example yields (white spaces have been added for readability):
<films>

<name>The Rock</name>
<name>Goldfinger</name>

</films>

All functions defined in an XQuery module can be called remotely, provided that both
the XRPC client and the XPRC server can access the same module definition file. Beware
that the XRPC server does not check if it is indeed accessing the same module definition
file as meant by the caller. Hence, if the XRPC client uses a local file, and the XRPC
server happens to have a file on the server’s local system with the same name but different
contents, the query can produce unexpected results. It is up to the query writer to prevent
this problem from happening.

More examples. A more elaborate example demonstrates the possibility of multiple
remote function calls to a peer:

import module namespace f="films" at "http://example.org/film.xq";

<films> {
for $actor in ("Julie Andrews", "Sean Connery") (Q2)
return

execute at {"x.example.org"} {f:filmsByActor($actor)}
} </films>

To make it a bit more complex, we could do multiple function calls to multiple remote
peers:

Chapter 4: XQuery 84

import module namespace f="films" at "http://example.org/film.xq";

<films> {
for $actor in ("Julie Andrews", "Sean Connery") (Q3)
for $dst in ("x.example.org", "y.example.org")
return execute at {$dst} {f:filmsByActor($actor)}

} </films>

Complex communication patterns may be programmed with XRPC, especially if recur-
sive functions are used:

module namespace film="filmdb";

declare function
film:recursiveActor($dsts as xs:string*, $actor as xs:string) as node()*
{

let $cnt := fn:count($destinations)
let $pos := ($cnt / 2) cast as xs:integer
let $dsts1 := fn:subsequence($destinations, 1, $pos)
let $dsts2 := fn:subsequence($destinations, $pos+1)
let $peer1 := $destinations[1] (Q4)
let $peer2 := $destinations[$pos]
return (

if ($cnt > 1) then
execute at {$peer1} {film:recursiveActor($dsts1, $actor)}

else (),
doc("filmDB.xml")//name[../actor=$actor],
if ($cnt > 2) then

execute at {$peer2} {film:recursiveActor($dsts2, $actor)}
else ())

};

The above function executes the function recursiveActor on a set of destination peers,
uniting all results, and does so by constructing an binary spanning tree of recursive XRPC
calls.

4.7.3 XRPC Server

As from version 0.16, the module xrpc_server is loaded automatically when loading the
module pathfinder:

$ Mserver --dbinit="module(pathfinder);"
...
XRPC administrative console at http://localhost:50001/admin
MonetDB>

By default, the XRPC server listens to the port number (mapi_port + 1). As the default
mapi_port number is 50000, the default xrpc_port number is thus 50001 (please note the
port number of the XRPC administrative console above).

Change mapi_port will change de XRPC server port as well (please not the different
port number of the XRPC administrative console below):

Chapter 4: XQuery 85

$ Mserver --set mapi_port=60000 --dbinit="module(pathfinder);"
...
XRPC administrative console at http://localhost:60001/admin
MonetDB>

Of course, the xrpc_port can be also set explicitly with the --set var=value option
and this will not affect the value of mapi_port:

$ Mserver --set xrpc_port=60000 --dbinit="module(pathfinder);"
...
XRPC administrative console at http://localhost:60000/admin
MonetDB>monet_environment.find("mapi_port").print();
["50000"]
MonetDB>monet_environment.find("xrpc_port").print();
["60000"]
MonetDB>

Trusted Modules. For security reasons, the XRPC server won’t execute an arbitrary
module, instead, it will only execute those modules which location (given by the at-hint)
has the same prefix as one of the values listed in the MIL variable xrpc_trusted:

MonetDB>xrpc_trusted.print();
#--#
h t # name
str void # type
#--#
["http://monetdb.cwi.nl", nil]
["${prefix}/share/MonetDB/xrpc/export", nil]

Hence, by default, only modules stored in the MonetDB domain and in the export
directory can be called. Calls to functions in un-trusted modules will be rejected with an
HTTP response code 403.

The default value of xrpc_trusted can be overwritten or extended:

$ Mserver --set xrpc_trusted="http://example.org/" --dbinit="module(pathfinder);"
...
MonetDB>xrpc_trusted.print();
#---------------------------------#
h t # name
str void # type
#---------------------------------#
["http://example.org/", nil]
MonetDB>xrpc_trusted.insert("http://monetdb.cwi.nl", nil);
MonetDB>xrpc_trusted.print();
#---#
h t # name
str void # type
#---#
["http://example.org/", nil]
["http://monetdb.cwi.nl", nil]

Chapter 4: XQuery 86

By removing the MIL varialbe xrpc_trusted, one can instruct the XRPC server to
accept any modules:

MonetDB>xrpc_trusted.delete();

The XRPC Administrative Console. The XRPC extention comes with an adminstrative
console, which provides web interface to the XQuery funcions defined in:

${prefix}/share/MonetDB/xrpc/admin/admin.xq

The admin console is available via the URL:
http://localhost:<xrpc_port>/admin

By default, the admin console can only be accessed via the localhost. This is guarded
by the MIL variable xrpc_admin:

$ Mserver --dbinit="module(pathfinder);"# Monet Database Server V4.18.1
...
XRPC administrative console at http://localhost:50001/admin
MonetDB>xrpc_admin.print();
#-------------------------#
h t # name
str void # type
#-------------------------#
["127.0.0.1", nil]

To access the admin console from a remote host, the IP address must be listed in xrpc_
admin. Again, this can be done by overwriting or extending the value of xrpc_admin:

$ Mserver --set xrpc_admin="123.123.123.123" --dbinit="module(pathfinder);"
...
XRPC administrative console at http://localhost:50001/admin
MonetDB>xrpc_admin.print();
#---------------------------------#
h t # name
str void # type
#---------------------------------#
["123.123.123.123", nil]
MonetDB>xrpc_admin.insert("123.123.123.124",nil);
MonetDB>xrpc_admin.print();
#---------------------------------#
h t # name
str void # type
#---------------------------------#
["123.123.123.123", nil]
["123.123.123.124", nil]

File Serving. The XRPC server is a simple HTTP server as well. It serves all files
stored in:

${prefix}/share/MonetDB/xrpc

Chapter 4: XQuery 87

For example, the dummy XQuery module "export.xq" that is standard installed in:
${prefix}/share/MonetDB/xrpc/export

can be retrieved using the URL:
http://<yourhost>:<xrpc_port>/export/export.xq

Directory listing is turned off and it can only be turned on by changing the XRPC source
code.

4.7.4 The SOAP XRPC Message Format

The design goal of XRPC is to create a distributed XQuery mechanism with which different
XQuery processors at different sites can jointly execute queries. This implies that our XRPC
extension also encompasses a network protocol.

Network comminicatin in XRPC uses the Simple Object Access Protocol (SOAP), i.e.
XML messages over HTTP. The SOAP XRPC message format is defined in XRPC.xsd. Ac-
cording to the classification in the article "Discover SOAP encoding’s impact on Web service
performance", the SOAP XRPC protocol belongs to the family of "document/literal". Note
that SOAP XRPC should not be confused with SOAP RPC, a sub-protocol defined by the
SOAP 1.2 standard2.

XRPC Request Message. SOAP messages consist of an envelope, with an optional
Header element and a Body element. Inside the body, we define a request element with
several attributes:

• required attributes

• module: namespace of the XQuery module

• method: name of the called function

• arity: the number of parameters the called method has

• location: the at-hint, i.e. the location where the module file is stored.

• optional attributes

• iter-cnt: number of iterations included in this request

• updCall: is the called function an updating function (as defined by XQUF) or not.
Note that the pathfinder document management functions (e.g. pf:add-doc())
are also considered to be updating functions by XRPC.

The actual parameter values of a single function call are enclosed by a call element.
Each individual parameter consists of a sequence element, that contains zero or more
values.

Below we show the SOAP XRPC request message generated for the first example query
(Q2) that looks for films played by Sean Connery:

2 SOAP RPC is oriented towards binding with programming languages such as C++ and Java, and specifies
parameter marshaling of a certain number of simple (atomic) data type. However, its supported atomic
data types do not match directly those of the XQuery Data Model (XDM), and the support for arrays
and structs is not relevant in XRPC, where there rather is a need for supporting arbitrary-shaped XML
nodes as parameters as well as sequences of heterogeneously typed items. This is the reason why SOAP
XRPC message format, while supporting the general SOAP standard over HTTP with the purpose of
RPC, implements a new parameter passing sub-format, hence SOAP XRPC != SOAP RPC.

Chapter 4: XQuery 88

<?xml version="1.0" encoding="utf-8"?>
<env:Envelope

xmlns:xrpc="http://monetdb.cwi.nl/XQuery"
xmlns:env="http://www.w3.org/2003/05/soap-envelope"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://monetdb.cwi.nl/XQuery http://monetdb.cwi.nl/XQuery/XRPC.xsd">

<env:Body>
<xrpc:request module="filmdb"

method="filmsByActor"
arity="1"
location="http://example.org/film.xq"
iter-cnt="1"
updCall="false">

<xrpc:call>
<xrpc:sequence>

<xrpc:atomic-value xsi:type="xs:string">Sean Connery</xrpc:atomic-value>
</xrpc:sequence>

</xrpc:call>
</xrpc:request>

</env:Body>
</env:Envelope>

• Atomic values are represented with atomic-value, and are annotated with their (sim-
ple) XML Schema Type in the xsi:type attribute. Thus, the heterogeneously typed
sequence consisting on a string "abc" and a double 3.1 would become:

<xrpc:sequence>
<xrpc:atomic-value xsi:type="xs:string">abc</xrpc:atomic-value>
<xrpc:atomic-value xsi:type="xs:double">3.1</xrpc:atomic-value>

</xrpc:sequence>

• XML nodes are passed by value, enclosed by an element element:
<xrpc:sequence>

<xrpc:element>
<filmName>The Rock</filmName>

</xrpc:element>
<xrpc:element>

<filmName>Goldfinger</filmName>
</xrpc:element>

</xrpc:sequence>

Similarly, the XML Schema XRPC.xsd defines enclosing elements for document, at-
tribute, text, processing instruction, and comment nodes. Document nodes are repre-
sented in the SOAP message as a document element that contains the serialized doc-
ument root. Text, comment and processing instruction nodes are serialized textually
inside the respective elements text, comment and processing-instruction. Attribute
nodes are serialized inside the attribute element: <xrpc:attribute x="y">.

• User-defined types: XRPC fully supports the XQuery Data Model, a requirement for
making it an orthogonal language feature. This implies XRPC also supports pass-

Chapter 4: XQuery 89

ing of values of user-defined XML Schema types, including the ability to validate
SOAP messages. XQuery already allows importing XML Schema files that contain
such definitions. Values of user-defined types are enclosed in SOAP messages by
element elements, with a xsi:type attribute annotating their type. The XQuery
system implementing XRPC should include a xmlns namespace definition as well as
a xsi:schemaLocation declaration inside the Envelope element when values of such
imported element types occur in the SOAP message.

• Multi-parameter functions: for functions with more than one parameters, the value of
each parameter is enclosed in a separat sequence element. For example, to call the
function

declare function add ($v1 as xs:integer, $v2 as xs:integer) as xs:integer

with the parameters 10 and 20, the values are serialised as the following:
<xrpc:sequence>

<xrpc:atomic-value xsi:type="xs:integer">10</xrpc:atomic-value>
<xrpc:sequence>
<xrpc:sequence>

<xrpc:atomic-value xsi:type="xs:integer">20</xrpc:atomic-value>
<xrpc:sequence>

• Loop-lifting: on of the main feature of the SOAP XRPC protocol is the support for
loop-lifting, that is, all iterations in a for-loop that containing the applications of the
same function (but usually with different parameter values) on the same remote peer,
are serialised in one XRPC request message. The parameter values of each iteration is
enclosed in a separate call element. The execution results of all those iterations will
also be serialised into one XRPC response message. For example, the example query
(Q2) above contains two iterations that call the same function on the same remote
peer. For this query, the following request message (only the main part is shown) will
be generated:

<xrpc:request module="filmdb"
method="filmsByActor"
arity="1"
location="http://example.org/film.xq"
iter-cnt="2"
updCall="false">

<xrpc:call>
<xrpc:sequence>

<xrpc:atomic-value xsi:type="xs:string">Julie Andrews</xrpc:atomic-value>
</xrpc:sequence>

</xrpc:call>
<xrpc:call>

<xrpc:sequence>
<xrpc:atomic-value xsi:type="xs:string">Sean Connery</xrpc:atomic-value>

</xrpc:sequence>
</xrpc:call>

</xrpc:request>

XRPC Response Messages follow the same principles, e.g.:

Chapter 4: XQuery 90

<?xml version="1.0" encoding="utf-8"?>
<env:Envelope

xmlns:xrpc="http://monetdb.cwi.nl/XQuery"
xmlns:env="http://www.w3.org/2003/05/soap-envelope"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://monetdb.cwi.nl/XQuery

http://monetdb.cwi.nl/XQuery/XRPC.xsd">
<env:Body>

<xrpc:response module="filmdb" method="filmsByActor">
<xrpc:sequence>

<xrpc:element><filmName>The Rock</filmName></xrpc:element>
<xrpc:element><filmName>Goldfinger</filmName></xrpc:element>

</xrpc:sequence>
</xrpc:response>

</env:Body>
</env:Envelope>

Inside the body is now a xrpc:response element that contains the result sequence of
the remote function call.

XRPC Error Message. Whenever an XRPC server discovers an error during the pro-
cessing of an XRPC request, it immediately stops execution and sends back an XRPC
error message, using the format of the SOAP Fault message (see SOAP Version 1.2 Part
0: Primer and Part 1: Messaging Framework). For example, the following SOAP Fault
message indicates that a required module could not be loaded:

<?xml version="1.0" encoding="utf-8"?>
<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope"

xmlns:xml="http://www.w3.org/XML/1998/namespace">
<env:Body>

<env:Fault>
<env:Code>

<env:Value>env:Receiver</env:Value>
</env:Code>
<env:Reason>

<env:Text xml:lang="en">could not load module!</env:Text>
</env:Reason>

</env:Fault>
</env:Body>

</env:Envelope>

4.8 Frequently Asked Questions

4.8.1 General

Q: How powerful is MonetDB/XQuery? Which features of XQuery does it support? A: The
Language page lists features and limitations of the current MonetDB/XQuery implementa-
tion.

Chapter 4: XQuery 91

Q: I want to learn more about the research behind MonetDB/XQuery. A: Mon-
etDB/XQuery is powered by the research project Pathfinder. Information
about this project is available on the Pathfinder Project site, along with a publication list
and a list of persons and institutions involved.

4.8.2 Installation

Q: How do I install MonetDB/XQuery on my system? A: The Installation Guide section
gives download and installation instructions for various platforms with various degrees of
detail.

4.8.3 XQuery

Q: I get the message <code>!ERROR mapi reconnect: connect: Connection refused</code>,
when trying to execute a statement using mclient. A: Before you can start executing XQuery
statements, you need to start the MonetDB Server. Details on how to start the server can
be found here. If you have a MonetDB Server running and mclient cannot connect, you
might (in case of a Linux/Unix environment) have forgotten to load the pathfinder module:
module(pathfinder);.

Q: What XQuery Language is supported? A: The XQuery language is very powerful,
but it is sometimes difficult to grasp. If you have problems formulating your queries, please
make sure that the functions you use are supported by MonetDB/XQuery. A detailed list
of the supported functions please check this page.

Q: I want to learn XQuery

A: XQuery is a standard set by the W3C (World Wide Web Consortium). It is written
down as a specification. This specification is not very explanatory. If you would like an
introduction to XQuery, there are several websites available You can find them using Google
searching for "XQuery tutorial".

Q: I get the type error type error: no variant of function op:plus accepts the given argument
type(s): double*; integer, when trying to execute the following query: doc("foo")/val + 1
MonetDB/XQuery uses static typing which prohibits that operations on atomic values (like
value comparisons or arithmetics) work on sequence arguments. To avoid this compile
time error, the functions fn:zero-or-one() or fn:exactly-one() can be used. Note that these
functions will cause a runtime error if doc("foo")/val evaluates to more than one item.

4.8.4 Miscellaneous

Q: How do I add/delete a document to my collection? A: Check the Document collection
page, it will explain how this is done.

Q: I cannot find an answer to my problem. Where can I get help?

A: If this FAQ does not help you out (and the problem is XQuery related), you still have
a few options left to get assistance:

• The MonetDB Server pages.

• The MonetDB/XQuery mailing list

• The buglist maintained at Sourceforge.

Chapter 4: XQuery 92

4.9 Design Considerations

Redesign of the MonetDB software stack was driven by the need to reduce the effort to
extend the system into novel directions and to reduce the Total Execution Cost (TEC).
The TEC is what an end-user or application program will notice. The TEC is composed
on several cost factors:

• A) API message handling

• P) Parsing and semantic analysis

• O) Optimization and plan generation

• D) Data access to the persistent store

• E) Execution of the query terms

• R) Result delivery to the application

Choosing an architecture for processing database operations pre-supposes an intuition
on how the cost will be distributed. In an OLTP setting you expect most of the cost to
be in (P,O), while in OLAP it will be (D,E,R). In a distributed setting the components
(O,D,E) are dominant. Web-applications would focus on (A,E,R).

Such a simple characterization ignores the wide-spread differences that can be experi-
enced at each level. To illustrate, in D) and R) it makes a big difference whether the data
is already in the cache or still on disk. With E) it makes a big difference whether you are
comparing two integers, evaluation of a mathematical function, e.g., Gaussian, or a regular
expression evaluation on a string. As a result, intense optimization in one area may become
completely invisible due to being overshadowed by other cost factors.

The Version 5 infrastructure is designed to ease addressing each of these cost factors in
a well-defined way, while retaining the flexibility to combine the components needed for a
particular situation. It results in an architecture where you assemble the components for a
particular application domain and hardware platform.

The primary interface to the database kernel is still based on the exchange of text in the
form of queries and simply formatted results. This interface is designed for ease of inter-
pretation, versatility and is flexible to accommodate system debugging and application tool
development. Although a textual interface potentially leads to a performance degradation,
our experience with earlier system versions showed that the overhead can be kept within
acceptable bounds. Moreover, a textual interface reduces the programming effort otherwise
needed to develop test and application programs. The XML trend as the language for tool
interaction supports our decision.

4.10 Architecture Overview

The architecture is built around a few independent components: the MonetDB server,
the MonetDB guardian, and the client application. The MonetDB server is the heart of
the system, it manages a single physical database on one machine for all (concurrent)
applications. The guardian program works along side a single server, keeping an eye on its
behavior. If the server accidently crashes, it is this program that will attempt an automatic
restart. The server and the guardian are managed with the monetdb script, introduced in
Section 1.8.1 [Start and Stop], page 21.

Chapter 4: XQuery 93

The top layer consists of applications written in your favorite language. They provide
both specific functionality for a particular product, e.g., Proximity, and generic functional-
ity, e.g., the Aquabrowser or Dbvisualizer. The applications communicate with the server
using de-facto standard interface packaged, i.e., JDBC, ODBC, Perl, PHP, etc.

The middle layer consists of query language processors such as SQL and XQuery. The
former supports the core functionality of SQL’99 and extends into SQL’03. The latter
is based on the W3C standard and includes the XUpdate functionality. The query lan-
guage processors each manage their own private catalog structure. Software bridges, e.g.,
import/export routines, are used to share data between language paradigms.

M
A

L
in

te
rp

re
te

r

G
D

K
 la

ye
r

m
gu

ar
di

an

X
Q

ue
ry

co
m

pi
le

r
SQ

L
co

m
pi

le
r

RD
F

In
te

rf
ac

es
JD

BC
−P

H
P−

PE
RL

−P
Y

TH
O

N
−O

D
BC

−M
A

PI

m
se

rv
er

5
m

on
et

db

Figure 2.1

4.11 MonetDB Assembly Language (MAL)

The target language for a query compiler is the MonetDB Assembly Language (MAL). It
was designed to ease code generation and fast interpretation by the server. The compiler
produces algebraic query plans, which are turned into physical execution plans by the MAL
optimizers.

The output of a compiler is either an ascii representation of the MAL program or the
compiler is tightly coupled with the server to save parsing and communication overhead.

A snippet of the MAL code produced by the SQL compiler for the query select
count(*) from tables is shown below. It illustrates a sequences of relational opera-
tions against a table column and producing a partial result.

Chapter 4: XQuery 94

...
_22:bat[:oid,:oid] := sql.bind_dbat("tmp","_tables",0);
_23 := bat.reverse(_22);
_24 := algebra.kdifference(_20,_23);
_25 := algebra.markT(_24,0:oid);
_26 := bat.reverse(_25);
_27 := algebra.join(_26,_20);
_28 := bat.setWriteMode(_19);
bat.append(_28,_27,true);

...

MAL supports the full breath of computational paradigms deployed in a database set-
ting. It is language framework where the execution semantics is determined by the code
transformations and the final engine choosen.

The design and implementation of MAL takes the functionality offered previously a
significant step further. To name a few:
• All instructions are strongly typed before being executed.
• It supports polymorphic functions. They act as templates that produce strongly typed

instantiations when needed.
• Function style expressions where each assignment instruction can receive multiple tar-

get results; it forms a point in the dataflow graph.
• It supports co-routines (Factories) to build streaming applications.
• Properties are associated with the program code for ease of optimization and scheduling.
• It can be readily extended with user defined types and function modules.

4.12 Execution Engine

The execution engine comes in several flavors. The default is a simple, sequential MAL
interpreter. For each MAL function call it creates a stack frame, which is initialized with
all constants found in the function body. During interpretation the garbage collector en-
sures freeing of space consumptive tables (BATs) and strings. Furthermore, all temporary
structures are garbage collected before the funtion returns the result.

This simple approach leads to an accumulation of temporary variables. They can be
freed earlier in the process using an explicit garbage collection command, but the general
intend is to leave such decisions to an optimizer or scheduler.

The execution engine is only called when all MAL instructions can be resolved against
the available libraries. Most modules are loaded when the server starts using a bootstrap
script mal init.mx Failure to find the startup-file terminates the session. It most likely
points to an error in the MonetDB configuration file.

During the boot phase, the global symbol table is initialized with MAL function and
factory definitions, and loading the pre-compiled commands and patterns. The libraries
are dynamically loaded by default. Expect tens of modules and hundreds of operations to
become readily available.

Modules can not be dropped without restarting the server. The rational behind this
design decision is that a dynamic load/drop feature is often hardly used and severely com-
plicates the code base. In particular, upon each access to the global symbol table we have

Chapter 4: XQuery 95

to be prepared that concurrent threads may be actively changing its structure. Especially,
dropping modules may cause severe problems by not being able to detect all references kept
around. This danger required all accesses to global information to be packaged in a critical
section, which is known to be a severe performance hindrance.

4.13 Session Scenarios

In MonetDB multiple languages, optimizers, and execution engines can be combined at
run time to satisfy a wide user-community. Such an assemblage of components is called
a scenario and consists of a reader, parser, optimizer, tactic scheduler and engine. These
hooks allow for both linked-in and external components.

The languages supported are SQL, XQuery, and the Monet Assembly Language (MAL).
The default scenario handles MAL instructions, which is used to illustrate the behavior of
the scenario steps.

The MAL reader component handles interaction with a front-end to obtain a string for
subsequent compilation and execution. The reader uses the common stream package to
read data in large chunks, if possible. In interactive mode the lines are processed one at a
time.

The MAL parser component turns the string into an internal representation of the MAL
program. During this phase semantic checks are performed, such that we end up with a
type correct program.

The code block is subsequently sent to an MAL optimizer. In the default case the
program is left untouched. For other languages, the optimizer deploys language specific code
transformations, e.g., foreign-key optimizations in joins and remote query execution. All
optimization information is statically derived from the code blocks and possible catalogues
maintained for the query language at hand. Optimizers leave advice and their findings in
properties in the symbol table, see Section 5.9 [Property Management], page 109.

Once the program has thus been refined, the MAL scheduler prepares for execution
using tactical optimizations. For example, it may parallelize the code, generate an ad-hoc
user-defined function, or prepare for efficient replication management. In the default case,
the program is handed over to the MAL interpreter without any further modification.

The final stage is to choose an execution paradigm, i.e. interpretative (default), com-
pilation of an ad-hoc user defined function, dataflow driven interpretation, or vectorized
pipe-line execution by a dedicated engine.

A failure encountered in any of the steps terminates the scenario cycle. It returns to the
user for a new command.

4.14 Scenario management

Scenarios are captured in modules; they can be dynamically loaded and remain active until
the system is brought to a halt. The first time a scenario xyz is used, the system looks for
a scenario initialization routine xyzinitSystem() and executes it. It is typically used to
prepare the server for language specific interactions. Thereafter its components are set to
those required by the scenario and the client initialization takes place.

Chapter 4: XQuery 96

When the last user interested in a particular scenario leaves the scene, we activate its
finalization routine calling xyzexitSystem(). It typically perform cleanup, backup and
monitoring functions.

A scenario is interpreted in a strictly linear fashion, i.e. performing a symbolic optimiza-
tion before scheduling decisions are taken. The routines associated with each state in the
scenario may patch the code so as to assure that subsequent execution can use a different
scenario, e.g., to handle dynamic code fragments.

The building blocks of scenarios are routines obeying a strict name signature. They
require exclusive access to the client record. Any specific information should be accessible
from there, e.g., access to a scenario specific state descriptor. The client scenario initializa-
tion and finalization brackets are xyzinitClient() and xyzexitClient().

The xyzparser(Client c) contains the parser for language XYZ and should fill the
MAL program block associated with the client record. The latter may have been initial-
ized with variables. Each language parser may require a catalog with information on the
translation of language specific datastructures into their BAT equivalent.

The xyzoptimizer(Client c) contains language specific optimizations using the MAL
intermediate code as a starting point.

The xyztactics(Client c) synchronizes the program execution with the state of the
machine, e.g., claiming resources, the history of the client or alignment of the request with
concurrent actions (e.g., transaction coordination).

The xyzengine(Client c) contains the applicable back-end engine. The default is the
MAL interpreter, which provides good balance between speed and ability to analysis its
behavior.

Chapter 5: MonetDB Assembly Language (MAL) 97

5 MonetDB Assembly Language (MAL)

The primary textual interface to the Monetdb kernel is a simple, assembly-like language,
called MAL. The language reflects the virtual machine architecture around the kernel li-
braries and has been designed for speed of parsing, ease of analysis, and ease of target
compilation by query compilers. The language is not meant as a primary programming
language, or scripting language. Such use is even discouraged.

Furthermore, a MAL program is considered a specification of intended computation
and data flow behavior. It should be understood that its actual evaluation depends on the
execution paradigm choosen in the scenario. The program blocks can both be interpreted as
ordered sequences of assembler instructions, or as a representation of a data-flow graph that
should be resolved in a dataflow driven manner. The language syntax uses a functional style
definition of actions and mark those that affect the flow explicitly. Flow of control keywords
identify a point to chance the interpretation paradigm and denote a synchronization point.

MAL is the target language for query compilers, such as the SQL and XQuery front-
ends. Even simple SQL queries generate a long sequence of MAL instructions. They
represent both the administrative actions to ensure binding and transaction control, the
flow dependencies to produce the query result, and the steps needed to prepare the result
set for delivery to the front-end.

Only when the algebraic structure is too limited (e.g. updates), or the database back-
end lacks feasible builtin bulk operators, one has to rely on more detailed flow of control
primitives. But even in that case, the basic blocks to be processed by a MAL back-end are
considered large, e.g. tens of simple bulk assignment instructions.

The remainder of this chapter provide a concise overview of the language features and
illustrative examples.

5.1 MAL Literals

Literals in MAL follow the lexical conventions of the programming language C. A default
type is attached, e.g. the literal 1 is typed as an int value. Likewise, the literal 3.14 is
typed flt rather than dbl.

A literal can be coerced to another type by tagging it with a type classifier, provided a
coercion operation is defined. For example, 1:lng marks the literal as of type lng. and
"1999-12-10":date creates a date literal.

MonetDB comes with the hardwired types bit, bte, chr, wrd, sht, int, lng, oid,
flt, dbl, str and bat, the bat identifier. The kernel code has been optimized to deal with
these types efficiently, i.e. without unnecessary function call overheads. In addition, the
system supports temporal types date, daytime, time, timestamp, timezone, extensions
to deal with IPv4 addresses and URLs using inet, url, and several types to interact more
closely with the kernel lock, semphore. This list can be extended with user defined types.

5.2 MAL Variables

Variables are denoted by identifers and implicitly defined upon first use. They take on a
type through a type classifier or inherit it from the context in which they are first used, see
〈undefined〉 [MAL Type System], page 〈undefined〉.

Chapter 5: MonetDB Assembly Language (MAL) 98

Variables are organized into two classes, starting with and without an underscore. The
latter are reserved as MAL parser tempoaries, whose name aligns with an entry in the
symbol table. In general they can not be used in MAL programs, but they may become
visible in MAL program listings or during debugging.

5.3 Instructions

A MAL instruction has purposely a simple format. It is syntactically represented by an
assignment, where an expression (function call) delivers results to multiple target variables.
The assignment patterns recognized are illustrated below.

(t1,..,t32) := module.fcn(a1,..,a32);
t1 := module.fcn(a1,..,a32);
t1 := v1 operator v2;
t1 := literal;
(t1,..,tn) := (a1,..,an);

Operators are grouped into user defined modules. Ommission of the module name is
interpreter as the user module.

Simple binary arithmetic operations are merely provided as a short-hand, e.g. the ex-
pression t:=2+2 is converted directly into t:= calc.+(2,2).

Target variables are optional. The compiler introduces temporary variables to hold the
result of the expression upon need. They won’t show up when you list the MAL program
unless it is used elsewhere.

For parsing simplicity, each instruction fits on a single line. Comments start with a
sharp ’#’ and continues to the end of the line. They are retained in the internal code
representation to ease debugging of compiler generated MAL programs.

The data structure to represent a MAL block is kept simple. It contains a sequence of
MAL statements and a symbol table. The MAL instruction record is a code byte string
overlaid with the instruction pattern, which contains references into the symbol tables and
administrative data for the interpreter.

This method leads to a large allocated block, which can be easily freed. Variable- and
statement- block together describe the static part of a MAL procedure. It carries enough
information to produce a listing and to aid symbolic debugging.

5.4 MAL Flow-of-control

The flow of control within a MAL program block can be changed by tagging a statement
with either return, yield, barrier, catch, leave, redo, or exit.

The flow modifiers return and yield mark the end of a call and return one or more
results to the calling environment. The return and yield are followed by a target list or
an assignment, which is executed first.

The barrier (catch) and exit pair mark a guarded statement block. They may be
nested to form a proper hierarchy identified by their primary target variable, also called the
control variable.

The leave and redo are conditional flow modifiers. The control variable is used after
the assignment statement has been evaluated to decide on the flow-of-control action to be

Chapter 5: MonetDB Assembly Language (MAL) 99

taken. Built-in controls exists for booleans and numeric values. The barrier block is opened
when the control variable holds true, when its numeric value >= 0, or when it is a non-empty
string. The nil value blocks entry in all cases.

Once inside the barrier you have an option to prematurely leave it at the exit statement
or to redo interpretation just after the corresponding barrier statement. Much like ’break’
and ’continue’ statements in the programming language C. The action is taken when the
condition is met.

The exit marks the exit for a block. Its optional assignment can be used to re-initialize
the barrier control variables or wrap-up any related administration.

The barrier blocks can be properly nested to form a hierarchy of basic blocks. The
control flow within and between blocks is simple enough to deal with during an optimizer
stage. The redo and leave statements mark the partial end of a block. Statements within
these blocks can be re-arranged according to the data-flow dependencies. The order of
partial blocks can not be changed that easily. It depends on the mutual exclusion of the
data flows within each partial block.

Common guarded blocks in imperative languages are the for-loop and if-then-else con-
structs. They can be simulated as follows.

Consider the statement for(i=1;i<10;i++) print(i). The (optimized) MAL block to
implement this becomes:

i:= 1;
barrier B:= i<10;

io.print(i);
i:= i+1;

redo B:= i<10;
exit B;

Translation of the statement if(i<1) print("ok"); else print("wrong"); becomes:

i:=1;
barrier ifpart:= i<1;

io.print("ok");
exit ifpart;
barrier elsepart:= i>=1;

io.print("wrong");
exit elsepart;

Note that both guarded blocks can be interchanged without affecting the outcome. More-
over, neither block would have been entered if the variable happens to be assigned nil.

The primitives are sufficient to model a wide variety of iterators, whose pattern look
like:

barrier i:= M.newIterator(T);
elm:= M.getElement(T,i);
...
leave i:= M.noMoreElements(T);
...
redo i:= M.hasMoreElements(T);

exit i:= M.exitIterator(T);

Chapter 5: MonetDB Assembly Language (MAL) 100

The semantics obeyed by the iterator implementations is as follows. The redo expression
updates the target variable i and control proceeds at the first statement after the barrier
when the barrier is opened by i. If the barrier could not be re-opened, execution proceeds
with the first statement after the redo. Likewise, the leave control statement skips to the
exit when the control variable i shows a closed barrier block. Otherwise, it continues with
the next instruction. Note, in both failed cases the control variable is possibly changed.

A recurring situation is to iterate over the elements in a BAT. This is supported by an
iterator implementation for BATs as follows:

barrier (idx,hd,tl):= bat.newIterator(B);
...
redo (idx,hd,tl):= bat.hasMoreElements(B);

exit (ids,hd,tl);

Where idx is an integer to denote the row in the BAT, hd and tl denote values of the
current element.

5.5 Functions

MAL comes with a standard functional abstraction scheme. Functions are represented
by MAL instruction lists, enclosed by a function signature and end statement. The
function signature lists the arguments and their types. The end statement marks the end
of this sequence. Its argument is the function name.

An illustrative example is:

function user.helloWorld(msg:str):str;
io.print(msg);
msg:= "done";
return msg;

end user.hellowWorld;

The module name designates the collection to which this function belongs. All user
defined functions are assembled in the module user by default. It may be dropped without
affecting the intended semantics.

The functional abstraction scheme comes with several variations: commands, pat-
terns, and factories. They are discussed shortly.

5.5.1 Polymorphic Functions

Polymorphic functions are characterised by type variables denoted by :any and an optional
index. Each time a polymorphic MAL function is called, the symbol table is first inspected
for the matching strongly typed version. If it does not exists, a copy of the MAL program
is generated, whereafter the type variables are replaced with their concrete types. The new
MAL program is immediately type checked and, if no errors occured, added to the symbol
table.

The generic type variable :any designates an unknown type, which may be filled at type
resolution time. Unlike indexed polymorphic type arguments, :any type arguments match
possibly with different concrete types.

An example of a parameterised function is shown below:

Chapter 5: MonetDB Assembly Language (MAL) 101

function user.helloWorld(msg:any_1):any_1;
io.print(msg);
return user.helloWorld;

end helloWorld;

The type variables ensure that the return type equals the argument type. Type variables
can be used at any place where a type name is permitted. Beware that polymorphic typed
variables are propagated throughout the function body. This may invalidate type resolutions
decisions taken earlier (See 〈undefined〉 [MAL Type System], page 〈undefined〉).

This version of helloWorld can also be used for other arguments types, i.e.
bit,sht,lng,flt,dbl,.... For example, calling helloWorld(3.14:flt) echoes a float
value.

5.5.2 C functions

The MAL function body can also be implemented with a C-function. They are introduced
to the MAL type checker by providing their signature and an address qualifier for linkage.

We distinguish both command and pattern C-function blocks. They differ in the
information accessible at run time. The command variant calls the underlying C-function,
passing pointers to the arguments on the MAL runtime stack. The pattern command is
passed pointers to the MAL definition block, the runtime stack, and the instruction itself.
It can be used to analyse the types of the arguments directly.

For example, the definitions below link the kernel routine BKCinsert bun with the
function bat.insert(). It does not fully specify the result type. The io.print() pattern
applies to any BAT argument list, provided they match on the head column type. Such a
polymorphic type list may only be used in the context of a pattern.

command bat.insert(b:bat[:any_1,:any_2], ht:any_1, tt:any_2)
:bat[:any_1,:any_2]
address BKCinsert_bun;

pattern io.print(b1:bat[:any_1,:any]...):int
address IOtable;

5.6 Factories

A convenient programming construct is the co-routine, which is specified as an ordinary
function, but maintains its own state between calls, and permits re-entry other than by the
first statement.

The random generator example is used to illustrate its definition and use.
factory random(seed:int,limit:int):int;

rnd:=seed;
lim:= limit;

barrier lim;
leave lim:= lim-1;
rnd:= rnd*125;
yield rnd:= rnd % 32676;
redo lim;

exit lim;

Chapter 5: MonetDB Assembly Language (MAL) 102

end random;

The first time this factory is called, a plant is created in the local system to handle the
requests. The plant contains the stack frame and synchronizes access.

In this case it initializes the generator. The random number is generated and yield
as a result of the call. The factory plant is then put to sleep. The second call received
by the factory wakes it up at the point where it went to sleep. In this case it will find a
redo statement and produces the next random number. Note that also in this case a seed
and limit value are expected, but they are ignored in the body. This factory can be called
upon to generate at most ’limit’ random numbers using the ’seed’ to initialize the generator.
Thereafter it is being removed, i.e. reset to the original state.

A cooperative group of factories can be readily constructed. For example, assume we
would like the random factories to respond to both random(seed,limit) and random().
This can be defined as follows:

factory random(seed:int,limit:int):int;
rnd:=seed;
lim:= limit;

barrier lim;
leave lim:= lim-1;
rnd:= rnd*125;
yield rnd:= rnd % 32676;
redo lim;

exit lim;
end random;

factory random():int;
barrier forever:=true;

yield random(0,0);
redo forever;

exit forever;
end random;

5.6.1 Factory Ownership

For simple cases, e.g. implementation of a random function, it suffices to ensure that the
state is secured between calls. But, in a database context there are multiple clients active.
This means we have to be more precise on the relationship between a co-routine and the
client for which it works.

The co-routine concept researched in Monet 5 is the notion of a ’factory’, which consists of
’factory plants’ at possibly different locations and with different policies to handle requests.
Factory management is limited to its owner, which is derived from the module in which it
is placed. By default Admin is the owner of all modules.

The factory produces elements for multiple clients. Sharing the factory state or even
remote processing is up to the factory owner. They are set through properties for the factory
plant.

Chapter 5: MonetDB Assembly Language (MAL) 103

The default policy is to instantiate one shared plant for each factory. If necessary, the
factory can keep track of a client list to differentiate the states. A possible implementation
would be:

factory random(seed:int,clientid:int):int;
clt:= bat.new(:int,:int);
bat.insert(clt,clientid,seed);

barrier always:=true;
rnd:= algebra.find(clt,clientid);

catch rnd; #failed to find client
bat.insert(clt,clientid,seed);
rnd:= algebra.find(clt,clientid);

exit rnd;
rnd:= rnd * 125;
rnd:= rnd % 32676;
algebra.replace(clt,clientid,rnd);
yield rnd;
redo always;

exit always;
end random;

The operators to built client aware factories are, factory.getCaller(), which returns
a client index, factory.getModule() and factory.getFunction(), which returns the
identity of scope enclosed.

To illustrate, the client specific random generator can be shielded using the factory:
factory random(seed:int):int;
barrier always:=true;

clientid:= factory.getCaller();
yield user.random(seed, clientid);
redo always;

exit always;
end random;

5.6.2 Complex Factories

The factory scheme can be used to model a volcano-style query processor. Each node in
the query tree is an iterator that calls upon the operands to produce a chunk, which are
combined into a new chunk for consumption of the parent. The prototypical join(R,S) query
illustrates it. The plan does not test for all boundary conditions, it merely implements a
nested loop. The end of a sequence is identified by a NIL chunk.

factory query();
Left:= sql.bind("relationA");
Right:= sql.bind("relationB");
rc:= sql.joinStep(Left,Right);

barrier rc!= nil;
io.print(rc);
rc:= sql.joinStep(Left,Right);
redo rc!= nil;

exit rc;

Chapter 5: MonetDB Assembly Language (MAL) 104

end query;

#nested loop join
factory sql.joinStep(Left:bat[:any,:any],Right:bat[:any,:any]):bat[:any,:any];

lc:= bat.chunkStep(Left);
barrier outer:= lc != nil;

rc:= bat.chunkStep(Right);
barrier inner:= rc != nil;

chunk:= algebra.join(lc,rc);
yield chunk;
rc:= bat.chunkStep(Right);
redo inner:= rc != nil;

exit inner;
lc:= bat.chunkStep(Left);
redo outer:= lc != nil;

exit outer;
we have seen everything
return nil;

end joinStep;

#factory for left branch
factory chunkStepL(L:bat[:any,:any]):bat[:any,:any];

i:= 0;
j:= 20;
cnt:= algebra.count(L);

barrier outer:= j<cnt;
chunk:= algebra.slice(L,i,j);
i:= j;
j:= i+ 20;
yield chunk;
redo loop:= j<cnt;

exit outer;
send last portion
chunk:= algebra.slice(L,i,cnt);
yielD chunk;
return nil;

end chunkStep;

#factory for right leg
factory chunkStepR(L:bat[:any,:any]):bat[:any,:any];

So far we haven’t re-used the pattern that both legs are identical. This could be mod-
eled by a generic chunk factory. Choosing a new factory for each query steps reduces the
administrative overhead.

Chapter 5: MonetDB Assembly Language (MAL) 105

5.6.3 Materialized Views

An area where factories might be useful are support for materialized views, i.e. the result
of a query is retained for ease of access. A simple strategy is to prepare the result once
and return it on each successive call. Provided the arguments have not been changed. For
example:

factory view1(l:int, h:int):bat[:oid,:str];
a:bat[:oid,:int]:= bbp.bind("emp","age");
b:bat[:oid,:str]:= bbp.bind("emp","name");

barrier always := true;
lOld := l;
hOld := h;
c := algebra.select(a,l,h);
d := algebra.semijoin(b,c);

barrier available := true;
yield d;
leave available := calc.!=(lOld,l);
leave available := calc.!=(hOld,h);
redo available := true;

exit available;
redo always;

exit always;
end view1;

The code should be extended to also check validity of the BATs. It requires a check
against the last transaction identifier known.

The Factory concept is still rather experimental and many questions should be consid-
ered, e.g. What is the lifetime of a factory? Does it persists after all clients has disappeared?
What additional control do you need? Can you throw an exception to a Factory?

5.7 Type Resolution

Given the interpretative nature of many of the MAL instructions, when and where type
resolution takes place is a critical design issue. Performing it too late, i.e. at each instruction
call, leads to performance problems if we derive the same information over and over again.
However, many built-in operators have polymorphic typed signatures, so we cannot escape
it altogether.

Consider the small illustrative MAL program:
function sample(nme:str, val:any_1):bit;

c := 2 * 3;
b := bbp.bind(nme); #find a BAT
h := algebra.select(b,val,val);
t := aggr.count(h);
x := io.print(t);
y := io.print(val);

end sample;

The function definition is polymorphic typed on the 2nd argument, it becomes a concrete
type upon invocation. The system could attempt a type check, but quickly runs into

Chapter 5: MonetDB Assembly Language (MAL) 106

assumptions that generally do not hold. The first assignment can be type checked during
parsing and a symbolic optimizer could even evaluate the expression once. Looking up a
BAT in the buffer pool leads to an element :bat[ht,tt] where ht and tt are runtime dependent
types, which means that the selection operation can not be type-checked immediately. It
is an example of an embedded polypmorphic statement, which requires intervention of the
user/optimizer to make the type explicit before the type resolver becomes active. The
operation count can be checked, if it is given a BAT argument. This assumes that we can
infer that ’h’ is indeed a BAT, which requires assurance that algebra.select produces
one. However, there are no rules to avoid addition of new operators, or to differentiate
among different implementations based on the argument types. Since print(t) contains
an undetermined typed argument we should postpone typechecking as well. The last print
statement can be checked upon function invocation.

Life becomes really complex if the body contains a loop with variable types. For then we
also have to keep track of the original state of the function. Or alternatively, type checking
should consider the runtime stack rather than the function definition itself.

These examples give little room to achieve our prime objective, i.e. a fast and early
type resolution scheme. Any non-polymorphic function can be type checked and marked
type-safe upon completion. Type checking polymorphic functions are post-poned until a
concrete type instance is known. It leads to a clone, which can be type checked and is
entered into the symbol table.

5.7.1 User Defined Types

MonetDB supports an extensible type system to accomodate a wide spectrum of database
kernels and application needs. The type administration keeps track of their properties and
provides access to the underlying implementations.

MAL recognizes the definition of a new type by replacing the module keyword with
atom. Atoms definitions require special care, because their definition and properties should
be communicated with the kernel library. The commands defined in an atom block are
screened as of interest to the library.

MonetDB comes with the hardwired types bit, chr, sht, int, lng, oid, flt, dbl,
str and bat, the representation of a bat identifier. The kernel code has been optimized to
deal with these types efficiently, i.e. without unnecessary function call overheads.

A small collection of user-defined atom types is shipped with the sysem. They imple-
ment types considered essential for end-user applications, such as color, date, daytime,
time, timestamp, timezone, blob, and inet, url. They are implemented using the type
extension mechanism described below. As such, they provide examples for future exten-
sions. A concrete example is the ’blob’ datatype in the MonetDB atom module library(see
../modules/atoms/blob.mx)

5.7.2 Defining your own types

For the courageous at heart, you may enter the difficult world of extending the kernel library.
The easiest way is to derive the atom modules from one shipped in the source distributed.
More involved atomary types require a study of the documentation associated with the
atom structures (gdk atoms), because you have to develop a handful routines complying
with the signatures required in the kernel library. They are registered upon loading the
atom module.

Chapter 5: MonetDB Assembly Language (MAL) 107

5.8 Boxed Variables

Clients sessions often come with a global scope of variable settings. Access to these global
variables should be easy, but they should also provide protection against concurrent update
when the client wishes to perform parallel processing. Likewise, databases, query languages,
etc. may define constants and variables accessible, e.g., relational schemas, to a selected
user group.

The approach taken is to rely on persistent object spaces as pioniered in Lynda and
-later- JavaSpaces. They are called boxes in MonetDB and act as managed containers for
persistent variables.

Before a client program can interact with a box, it should open it, passing qualifying
authorization information and parameters to instruct the box-manager of the intended use.
A built-in box is implicitly opened when you request for its service.

At the end of a session, the box should be closed. Some box-managers may implement
a lease-scheme to automatically close interaction with a client when the lease runs out.
Likewise, the box can be notified when the last reference to a leased object ceases to exist.

A box can be extended with a new object using the function deposit(name) with name
a local variable. The default implementation silently accepts any new definition of the box.
If the variable was known already in the box, its value is overwritten.

A local copy of an object can be obtained using the pattern ’take(name,[param])’, where
name denotes the variable of interest. The type of the receiving variable should match the
one known for the object. Whether an actual copy is produced or a reference to a shared
object is returned is defined by the box manager.

The object is given back to the box manager calling ’release(name)’. It may update the
content of the repository accordingly, release locks, and move the value to persistent store.
Whatever the semantics of the box requires. [The default implementation is a no-op]

Finally, the object manager can be requested to ’discard(name)’ a variable completely.
The default implementation is to reclaim the space in the box.

Concurrency control, replication services, as well as access to remote stores may be dele-
gated to a box manager. Depending on the intended semantics, the box manager may keep
track of the clients holding links to this members, provide a traditional 2-phase locking
scheme, optimistic control, or check-out/check-in scheme. In all cases, these management
issues are transparant to the main thread (=client) of control, which operates on a tempo-
rary snapshot. For the time being we realize the managers as critical code sections, i.e. one
client is permitted access to the box space at a time.

Fo example, consider the client function:
function myfcn():void;

b:bat[:oid,:int] := bbp.take("mytable");
c:bat[:int,:str] := sql.take("person","age");
d:= intersect(b,c);
io.print(d);
u:str:= client.take(user);
io.print(u);
client.release(user);

end function;

Chapter 5: MonetDB Assembly Language (MAL) 108

The function binds to a copy from the local persistent BAT space, much like bat-names
are resolved in earlier MonetDB versions. The second statement uses an implementation of
take that searches a variable of interest using two string properties. It illustrates that a box
manager is free to extend/overload the predefined scheme, which is geared towards storing
MAL variables.

The result bat c is temporary and disappears upon garbage collection. The variable u
is looked up as the string object user.

Note that BATs b and c need be released at some point. In general this point in time
does not coincide with a computational boundary like a function return. During a session,
several bats may be taken out of the box, being processed, and only at the end of a session
being released. In this example, it means that the reference to b and c is lost at the end of
the function (due to garbarge collection) and that subsequent use requires another take()
call. The box manager bbp is notified of the implicit release and can take garbage collection
actions.

The box may be inspected at several times during a scenario run. The first time is when
the MAL program is type-checked for the box operations. Typechecking a take() function
is tricky. If the argument is a string literal, the box can be queried directly for the objects’
type. If found, its type is matched against the lhs variable. This strategy fails in the
situation when at runtime the object is subsequently replaced by another typed-instance in
the box. We assume this not to happen and the exceptions it raises a valuable advice to
reconsider the programming style.

The type indicator for the destination variable should be provided to proceed with proper
type checking. It can resolve overloaded function selection.

Inspection of the Box can be encoded using an iterator at the MAL layer and relying on
the functionality of the box. However, to improve introspection, we assume that all box im-
plementations provide a few rudimentary functions, called objects(arglist) and dir(arglist).
The function objects() produces a BAT with the object names, possibly limited to those
identified by the arglist.

The world of boxes has not been explored deeply yet. It is envisioned that it could play
a role to import/export different objects, e.g., introduce xml.take() which converts an XML
document to a BAT, jpeg.take() similer for an image.

Nesting boxes is possible. It provides a simple containment scheme between boxes, but
in general will interfere with the semantics of each box.

Each box has (should) have an access control list, which names the users having permis-
sion to read/write its content. The first one to create the box becomes the owner. He may
grant/revoke access to the box to users on a selective basis.

5.8.1 Session Box

Aside from box associated with the modules, a session box is created dynamically on behalf
of each client. Such boxes are considered private and require access by the user name (and
password). At the end of a session they are closed, which means that they are saved in
persistent store until the next session starts. For example:

function m():void;
box.open("client_name");
box.deposit("client_name","pi",3.417:flt);

Chapter 5: MonetDB Assembly Language (MAL) 109

f:flt := box.take("client_name","pi");
io.print(t);
box.close("client_name");

end function;

In the namespace it is placed subordinate to any space introduced by the system ad-
ministrator. It will contain global client data, e.g., user, language, database, port, and any
other session parameter. The boxes are all collected in the context of the database directory,
i.e. the directory <dbfarm>/box

5.8.2 Garbage Collection

The key objects managed by MonetDB are the persistent BATs, which call for an efficient
scheme to make them accessible for manipulation in the MAL procedures taking into account
a possibly hostile parallel access.

Most kernel routines produce BATs as a result, which will be referenced from the runtime
stack. They should be garbage collected as soon as deemed possible to free-up space. By
default, temporary results are garbage collected before returning from a MAL function.

5.8.3 Globale Environment

The top level interaction keeps a ’box’ with global variables, i.e. each MAL statement is
interpreted in an already initialized stack frame. This causes the following problems: 1)
how to get rid of global variables and 2) how to deal with variables that can take ’any’ type.
It is illustrated as follows:

f:= const.take("dbname");
io.print(f);

When executed in the context of a function, the answer will be simple [nil]. The reason
is that the expecteed type is not known at compilation time. The correct definition would
have been

f:str:= const.take("dbname");
io.print(f);

5.9 Property Management

Properties come in several classes, those linked with the symbol table and those linked with
the runtime environment. The former are determined once upon parsing or catalog lookup.
The runtime properties have two major subclasses, i.e. reflective and prescriptive. The
reflective properties merely provide a fast cache to information aggregated from the target.
Prescriptive properties communicate desirable states, leaving it to other system components
to reach this state at the cheapest cost possible. This multifacetted world makes it difficult
to come up with a concise model for dealing with properties. The approach taken here is
an experimental step into this direction.

This mal properties module provides a generic scheme to administer property sets and
a concise API to manage them. Its design is geared towards support of MAL optimizers,
which typically make multiple passes over a program to derive an alternative, better version.
Such code-transformations are aided by keeping track of derived information, e.g. the
expected size of a temporary result or the alignment property between BATs.

Chapter 5: MonetDB Assembly Language (MAL) 110

Properties capture part of the state of the system in the form of an simple term expression
(name, operator, constant). The property model assumes a namespace built around
Identifiers. The operator satisfy the syntax rules for MAL operators. Conditional operators
are quite common, e.g. the triple (count, <, 1000) can be used to denote a small table.

The property bearing objects in the MAL setting are variables (symbol table entries).
The direct relationship between instructions and a target variable, make it possible to keep
the instruction properties in the corresponding target variable.

Variables properties The variables can be extended at any time with a property set.
Properties have a scope identical to the scope of the corresponding variable. Ommision of
the operator and value turns it into a boolean valued property, whose default value is true.

b{count=1000,sorted}:= mymodule.action("table");
name{aligngroup=312} := bbp.take("person_name");
age{aligngroup=312} := bbp.take("person_age");

The example illustrates a mechanism to maintain alignment information. Such a prop-
erty is helpful for optimizers to pick an efficient algorithm.

MAL function signatures. A function signature contains a description of the objects it
is willing to accept and an indication of the expected result. The arguments can be tagged
with properties that ’should be obeyed, or implied’ by the actual arguments. It extends the
typing scheme used during compilation/optimization. Likewise, the return values can be
tagged with properties that ’at least’ exist upon function return.

function test(b:bat[:oid,:int]{count<1000}):bat[:oid,:int]{sorted}
#code block

end test

These properties are informative to optimizers. They can be enforced at runtime using
the operation optimizer.enforceRules() which injects calls into the program to check
them. An assertion error is raised if the property does not hold. The code snippet

z:= user.test(b);

is translated into the following code block;

mal.assert(b,"count","<",1000);
z:= user.test(b);
mal.assert(z,"sorted");

How to propagate properties? Property inspection and manipulation is strongly linked
with the operators of interest. Optimizers continuously inspect and update the properties,
while kernel operators should not be bothered with their existence. Property propagation
is strongly linked with the actual operator implementation. We examine a few recurring
cases.

V:=W; Both V and W should be type compatible, otherwise the compiler will already
complain.(Actually, it requires V.type()==W.type() and ~V.isaConstant()) But what hap-
pens with all others? What is the property propagation rule for the assignment? Several
cases can be distinguished:

I) W has a property P, unknown to V. II) V has a propery P, unknown to W. III) V
has property P, and W has property Q, P and Q are incompatible. IV) V and W have a
property P, but its value disaggrees.

Chapter 5: MonetDB Assembly Language (MAL) 111

case I). If the variable V was not initialized, we can simply copy or share the properties.
Copying might be too expensive, while shareing leads to managing the dependencies. case
II) It means that V is re-assigned a value, and depending on its type and properties we may
have to ’garbage collect/finalize’ it first. Alternatively, it could be interpreted as a property
that will hold after assignment which is not part of the right-hand side expression. case III)
if P and Q are type compatible, it means an update of the P value. Otherwise, it should
generates an exception. case IV) this calls for an update of V.P using the value of W.P.
How this should be done is property specific.

Overall, the policy would be to ’disgard’ all knowledge from V first and then copy the
properties from W.

[Try 1] V:= fcn(A,B,C) and signature fcn(A:int,B:int,C:int):int The signature provides
several handles to attach properties. Each formal parameter could come with a list of
’desirable/necessary’ properties. Likewise, the return values have a property set. This leads
to the extended signature function fcn(A:T,....,B:T): (C:T...D:T) where each Pi denotes a
property set. Properties P1..Pn can be used to select the proper function variant. At its
worst, several signatures of fcn() should be inspected at runtime to find one with matching
properties. To enable analysis and optimization, however, it should be clear that once the
function is finished, the properties Pk..Pm exist.

[Try 2] V:= fcn(A,B,C) and signature fcn(A:int,B:int,C:int):int The function is applicable
when a (simple conjuntive) predicate over the properties of the actual arguments holds. A
side-effect of execution of the function leads to an update of the property set associated
with the actual arguments. An example:

function fcn (A:int,B:bat[int,int],C:int):int
?

[Try 3] Organize property management by the processor involved, e.g. a cost-based
optimizer or a access control enforcer. For each optimizer we should then specify the
’symbolic’ effect of execution of instructions of interest. This means ’duplication’ of the
instruction set.

Can you drop properties? It seems possible, but since property operations occur before
actual execution there is no guarantee that they actually take place.

[case: how to handle sort(b:bat):bat as a means to propagate] [actually we need an
expression language to indicate the propety set, e.g. sort(b:bat):bat which first obtains the
properties of b and extends it with sorted. A nested structure emerge

Is it necessary to construct the property list intersection? Or do we need a user defined
function to consolidate property lists?]

Aside, it may be valuable to collect information on e.g. the execution time of functions
as a basis for future optimizations. Rather then cluttering the property section, it makes
sense to explicitly update this information in a catalog.

5.10 Properties at the MAL level

Aside from routines targeted as changing the MAL blocks, it should be possible to reason
about the properties within the language itself. This calls for gaining access and update.
For example, the following snippet shows how properties are used in a code block.

Chapter 5: MonetDB Assembly Language (MAL) 112

B := bbp.new(int,int);
I := properties.has(B,);
J := properties.get(B,);
print(J);

properties.set(B,,2315);
barrier properties.has(B,);
exit;

These example illustrate that the property manipulations are executed throug patterns,
which also accept a stack frame.

Sample problem with dropping properties:

B := bbp.new(int,int);
barrier tst:= randomChoice()

I := properties.drop(B,);
exit tst;

5.11 The cost model problem

An important issue for property management is to be able to pre-calculate a cost for a MAL
block. This calls for an cost model implementation that recognizes instructions of interest,
understands and can deal with the dataflow semantics, and

For example, selectivity estimations can be based on a histogram associated with a BAT.
The code for this could look like

B:= new(int,int);
properties.add(B,);
Z:= select(B,1,100);

Addition of a property may trigger its evaluation, provided enough information is avail-
able (e.g. catalog). The instruction triggers the calls properties.set(B,), properties.set(B,),
and properties.set(B,) once a property evaluation engine is ran against the code block. After
assignment to Z, we have to propagate properties properties.update(B,).

5.12 SQL case

To study the use of properties in the complete pipeline SQL-execution we contrive a small
SQL problem. The person table is sorted by name, the car table is unsorted.

create table person(name varchar not null,
address varchar);
create table car(name varchar,
model varchar,
milage int not null);
select distinct name, model, milage
from person, car
where car.name= person.name

and milage>60000;

Chapter 5: MonetDB Assembly Language (MAL) 113

5.13 Implementation rules

Properties can be associated with variables, MAL blocks, and MAL instructions. The
property list is initialized upon explicit request only, e.g. by the frontend parser, a box
manager, or as a triggered action.

Every property should come with a function that accepts a reference to the variable and
updates the property record. This function is activated either once or automatically upon
each selection.

5.14 Property ADT implementation

addProperty(O,P) adds property P to the list associated with O. If O represents a com-
pound structure, e.g. a BAT, we should indicate the component as well. For example,
addProperty(O,P,Ia,...Ib) introduces a property shared by the components Ia..Ib (indicated
with an integer index.

hasProperty(O,P) is a boolean function that merely checks existence hasnotProp-
erty(O,P) is the dual operation.

setProperty(O,P,V) changes the propety value to V. It may raise a PropertyUpdateVi-
olation exception when this can not be realized. Note, the property value itself is changed,
not the object referenced.

getProperty(O,P) retrieves the current value of a property. This may involve calling a
function or running a database query.

setPropertyAttribute(O,P,A) changes the behavior of the property. For example, the
attribute ’freeze’ will result in a call to the underlying function only once and to cache the
result for the remainder of the objects life time.

5.15 Predefined properties

The MAL language uses a few defaults, recognizable as properties
unsafe function has side effects.Default, unsafe=off
read data can be read but not updated
append data can be appended

Chapter 6: The MAL Interpreter 114

6 The MAL Interpreter

The MAL interpreter always works in the context of a single user session, which provides
for storage access to global variables and modules.

6.1 MAL API

The linkage between MAL interpreter and compiled C-routines is kept as simple as possible.
Basically we distinguish four kinds of calling conventions: CMDcall, FCNcall, FACcall, and
PATcall. The FCNcall indicates calling a MAL procedure, which leads to a recursive call
to the interpreter.

CMDcall initiates calling a linked function, passing pointers to the parameters and result
variable, i.e. f(ptr a0,..., ptr aN) The function returns a MAL-SUCCEED upon success and
a pointer to an exception string upon failure. Failure leads to raise-ing an exception in
the interpreter loop, by either looking up the relevant exception message in the module
administration or construction of a standard string.

The PATcall initiates a call which contains the MAL context, i.e. f(MalBlkPtr mb,
MalStkPtr stk, InstrPtr pci) The mb provides access to the code definitions. It is primarilly
used by routines intended to manipulate the code base itself, such as the optimizers. The
Mal stack frame pointer provides access to the values maintained. The arguments passed
are offsets into the stack frame rather than pointers to the actual value.

6.2 Exception handling

Calling a built-in or user-defined routine may lead to an error or a cached status message to
be dealt with in MAL. To improve error handling in MAL, an exception handling scheme
based on catch-exit blocks. The catch statement identifies a (string-valued) variable,
which carries the exception message from the originally failed routine or raise exception
assignment. During normal processing catch-exit blocks are simply skipped. Upon re-
ceiving an exception status from a function call, we set the exception variable and skip to
the first associated catch-exit block. MAL interpretation then continues until it reaches
the end of the block. If no exception variable was defined, we should abandon the function
alltogether searching for a catch block at a higher layer.

Exceptions raised within a linked-in function requires some care. First, the called proce-
dure does not know anything about the MAL interpreter context. Thus, we need to return
all relevant information upon leaving the linked library routine.

Second, exceptional cases can be handled deeply in the recursion, where they may also
be handled, i.e. by issueing an GDKerror message. The upper layers merely receive a
negative integer value to indicate occurrence of an error somewhere in the calling sequence.
We then have to also look into GDKerrbuf to see if there was an error raised deeply inside
the system.

The policy is to require all C-functions to return a string-pointer. Upon a successfull call,
it is a NULL string. Otherwise it contains an encoding of the exceptional state encountered.
This message starts with the exception identifer, followed by contextual details.

Chapter 6: The MAL Interpreter 115

6.3 Garbage collection

Garbage collection is relatively straightforward, because most values are retained on the
stackframe of an interpreter call. However, two storage types and possibly user-defined
type garbage collector definitions require attention: BATs and strings.

A key issue is to deal with temporary BATs in an efficient way. References to bats in
the buffer pool may cause dangling references at the language level. This appears as soons
as your share a reference and delete the BAT from one angle. If not carefull, the dangling
pointer may subsequently be associated with another BAT

All string values are private to the VALrecord, which means they have to be freed
explicitly before a MAL function returns. The first step is to always safe the destination
variable before a function call is made.

All operations are responsible to properly set the reference count of the BATs being
produced or destroyed. The libraries should not leave the physical reference count being
set. This is only allowed during the execution of a GDK operation. All references should
be logical.

6.4 MAL runtime stack

The runtime context of a MAL procedure is allocated on the runtime stack of the correspond-
ing interpreter. Access to the elements in the stack are through index offsets, determined
during MAL procedure parsing.

The scope administration for MAL procedures is decoupled from their actual runtime
behavior. This means we are more relaxed on space allocation, because the size is deter-
mined by the number of MAL procedure definitions instead of the runtime calling behavior.
(See mal interpreter for details on value stack management)

The variable names and types are kept in the stack to ease debugging. The underlying
string value need not be garbage collected. Runtime storage for variables are allocated on
the stack of the interpreter thread. The physical stack is often limited in size, which calls
for safeguarding their value and garbage collection before returning. A malicious procedure
or implementation will lead to memory leakage.

A system command (linked C-routine) may be interested in extending the stack. This
is precluded, because it could interfere with the recursive calling sequence of procedures.
To accommodate the (rare) case, the routine should issue an exception to be handled by
the interpreter before retrying. All other errors are turned into an exception, followed by
continuing at the exception handling block of the MAL procedure.

Chapter 7: The MAL Optimizer 116

7 The MAL Optimizer

One of the prime reasons to design the MAL intermediate language is to have a high-level
description for database queries, which is easy to generate by a front-end compiler and easy
to decode, optimize and interpret.

An optimizer needs several mechanisms to be effective. It should be able to perform
a symbolic evaluation of a code fragment and collect the result in properties for further
decision making. The prototypical case is where an optimizer estimates the result size of a
selection.

Another major issue is to be able to generate and explore a space of alternative evaluation
plans. This exploration may take place up front, but can also be ran at runtime for query
fragments.

7.1 The Optimizer Landscape

A query optimizer is often a large and complex piece of code, which enumerates alternative
evaluation plans from which ’the best’ plan is selected for evaluation. Limited progress has
been made sofar to decompose the optimizer into (orthogonal) components, because it is
a common believe in research that a holistic view on the problem is a prerequisite to find
the best plan. Conversely, commercial optimizers use a cost-model driven approach, which
explores part of the space using a limited (up to 300) rewriting rules.

Our hypothesis is that query optimization should be realized with a collection of query
optimizer transformers (QOT), each dedicated to a specific task. Furthermore, they are
assembled in scenarios to support specific application domains or achieve a desired behavior.
Such scenarios are selected on a session basis, a query basis, or dynamically at runtime;
they are part of the query plan.

The query transformer list below is under consideration for development. For each we
consider its goal, approach, and expected impact. Moreover, the minimal prerequisites
identify the essential optimizers that should have done their work already. For example, it
doesn’t make sense to perform a static evaluation unless you have already propagated the
constants using Alias Removal.

Constant expressions Goal: to remove scalar expressions which need be evaluated once
during the query lifetime. Rationale: static expressions appear when variables used denote
literal constants (e.g. 1+1), when catalog information can be merged with the plan (e.g.
max(B.salary)), when session variables are used which are initialized once (e.g. user()).
Early evaluation aids subsequent optimization. Approach: inspect all instructions to locate
static expressions. Whether they should be removed depends on the expected re-use, which
in most cases call for an explicit request upon query registration to do so. The result of a
static evaluation provides a ground for alias removal. Impact: relevant for stored queries
(MAL functions) Prereq: alias removal, common terms

Relational Expression Optimizer Goal: to evaluate a relational plan using properties of
BATs, such as being empty or forming an aligned group. These optimizations assume that
the code generator can detect properties while compiling e.g. an SQL query. Impact: high
Prereq:

Alias Removal Goal: to reduce the number of variables referenceing the same value,
thereby reducing the analysis complexity. Rationale: query transformations often result

Chapter 7: The MAL Optimizer 117

in replacing the right-hand side expression with a result variable. This pollutes the code
block with simple assignments e.g. V:=T. Within the descendant flow the occurrence of
V could be replaced by T, provided V is never assigned a new value. Approach: literal
constants within a MAL block are already recognized and replaced by a single variable.
Impact: medium.

Common Term Optimizer Goal: to reduce the amount of work by avoiding calculation of
the same operation twice. Rationale: to simplify code generation for front-ends, they do not
have to remember the subexpressions already evaluated. It is much easier to detect at the
MAL level. Approach: simply walk through the instruction sequence and locate identical
patterns. (Enhance is with semantic equivalent instructions) Impact: High Prereq: Alias
Removal

Dead Code Removal Goal: to remove all instructions whose result is not used Rationale:
due to sloppy coding or alternative execution paths dead code may appear. Als XML
Pathfinder is expected to produce a large number of simple assignments. Approach: Every
instruction should produce a value used somewhere else. Impact: low

Heuristic Rule Rewrites Goal: to reduce the volume as quick as possible. Rationale:
most queries are focussed on a small part of the database. To avoid carrying too many
intermediates, the selection should be performed as early as possible in the process. This
assumes that selectivity factors are known upfront, which in turn depends on histogram of
the value distribution. Approach: locate selections and push them back/forth through the
flow graph. Impact: high

Join Path Optimizer Goal: to reduce the volume produced by a join sequence Rationale:
join paths are potentially expensive operations. Ideally the join path is evaluated starting
at the smallest component, so as to reduce the size of the intermediate results. Approach:
to successfully reduce the volume we need to estimate their processing cost. This calls for
statistics over the value distribution, in particular, correlation histograms. If statistics are
not available upfront, we have to restore to an incremental algorithm, which decides on the
steps using the size of the relations. Impact: high

Operator Sort Goal: to sort the dataflow graph in such a way as to reduce the cost,
or to assure locality of access for operands. Rationale: A simple optimizer is to order the
instructions for execution by permutation of the query components Approach: Impact:

Singleton Set Goal: to replace sets that are known to produce precisely one tuple.
Rationale: Singleton sets can be represented by value pairs in the MAL program, which
reduces to a scalar expression. Approach: Identify a set variable for replacement. Impact:

Range Propagation Goal: look for constant ranges in select statements and propagate
them through the code. Rationale: partitioned tables and views may give rise to expressions
that contain multiple selections over the same BAT. If their arguments are constant, the
result of such selects can sometimes be predicted, or the multiple selections can be cascaded
into a single operation. Impact: high, should be followed by alias removal and dead code
removal

Result Cacher Goal: to reduce the processing cost by keeping track of expensive to
compute intermediate results Rationale: Approach: result caching becomes active after an
instruction has been evaluated. The result can be cached as long as its underlying operands
remain unchanged. Result caching can be made transparent to the user, but affects the
other quer optimizers. Impact: high

Chapter 7: The MAL Optimizer 118

Vector Execution Goal: to rewrite a query to use a cache-optimal vector implementation
Rationale: processing in the cache is by far the best you can get. However, the operands may
far exceed the cache size and should be broken into pieces followed by a staged execution of
the fragments involved. Approach: replace the query plan with fragment streamers Impact:

Staged Execution Goal: to split a query plan into a number of steps, such that the
first response set is delivered as quickly as possible. The remainder is only produced upon
request. Rationale: interactive queries call for quick response and an indication of the
processing time involved to run it too completion. Approach: staged execution can be
realized using a fragmentation scheme over the database, e.g. each table is replaced by
a union of fragments. This fragmentation could be determined upfront by the user or is
derived from the query and database statistics. impact: high

Code Parallizer Goal: to exploit parallel IO and cpu processing in both SMP and MPP
settings. Rationale: throwing more resources to solve a complex query helps, provided it is
easy to determine that parallel processing recovers the administrative overhead Approach:
every flow path segment can be handled by an independent process thread. Impact: high

Query Evaluation Maps Goal: to avoid touching any tuple that is not relevant for
answering a query. Rationale: the majority of work in solving a query is to disgard tuples of
no interest and to find correlated tuples through join conditions. Ideally, the database learns
these properties over time and re-organizes (or builts a map) to replace disgarding by map
lookup. Approach: piggyback selection and joins as database fragmentation instructions
Impact: high

MAL Compiler (tactics) Goal: to avoid interpretation of functional expressions Ra-
tionale: interpretation of arithmetic expressions with an interpreter is always expensive.
Replacing a complex arithmetic expressin with a simple dynamically compiled C-functions
often pays off. Especially for cached (MAL) queries Approach: Impact: high

Dynamic Query Scheduler (tactics) Goal: to organize the work in a way so as to optimize
resource usage Rationale: straight interpretation of a query plan may not lead to the best
use of the underlying resources. For example, the content of the runtime cache may provide
an opportunity to safe time by accessing a cached source Approach: query scheduling is
the last step before a relation algebra interpreter takes over control. The scheduling step
involves a re-ordering of the instructions within the boundaries imposed by the flow graph.
impact: medium

Aggregate Groups Goal: to reduce the cost of computing aggregate expressions over
times Rationale: many of our applications call for calculation of aggregates over dynami-
cally defined groupings. They call for lengtly scans and it pays to piggyback all aggregate
calculates, leaving their result in the cache for later consumption (eg the optimizers) Ap-
proach: Impact: High

Data Cube optimizer Goal: to recognize data cube operations Rationale: Approach:
Impact:

Demand Driven Interpreter (tactics) Goal: to use the best interpreter and libraries
geared at the task at hand Rationale: Interpretation of a query plan can be based on
different computational models. A demand driven interpretation starts at the intended
output and ’walks’ backward through the flow graph to collect the pieces, possibly in a
pipelined fashion. (Vulcano model) Approach: merely calls for a different implementation
of the core operators Impact: high

Chapter 7: The MAL Optimizer 119

Iterator Strength Reduction Goal: to reduce the cost of iterator execution by moving
instructions out of the loop. Rationale: although iteration at the MAL level should be
avoided due to the inherent low performance compared to built-in operators, it is not
forbidden. In that case we should confine the iterator block to the minimal work needed.
Approach: inspect the flowgraph for each iterator and move instructions around. Impact:
low

Accumulator Evaluation Goal: to replace operators with cheaper ones. Rationale: based
on the actual state of the computation and the richness of the supporting libraries there
may exists alternative routes to solve a query. Approach: Operator rewriting depends on
properties. No general technique. The first implementation looks at calculator expressions
such as they appear frequently in the RAM compiler. Impact: high Prerequisite: should be
called after common term optimizer to avoid clashes. Status: Used in the SQL optimizer.

Code Inliner Goal: to reduce the calling depth of the interpreter and to obtain a
better starting point for code squeezing Rationale: substitution of code blocks (or macro
expansion) leads to longer linear code sequences. This provides opportunities for squeezing.
Moreover, at runtime building and managing a stackframe is rather expensive. This should
be avoided for functions called repeatedly. Impact: medium Status: Used in the SQL
optimizer to handle SQL functions.

Code Outliner Goal: to reduce the program size by replacing a group with a single
instruction Rationale: inverse macro expansion leads to shorter linear code sequences. This
provides opportunities for less interpreter overhead, and to optimize complex, but repetative
instruction sequences with a single hardwired call Approach: called explicitly to outline a
module (or symbol) Impact: medium

Garbage Collector Goal: to release resources as quickly as possible Rationale: BATs
referenced from a MAL program keep resources locked. Approach: In cooperation with a
resource scheduler we should identify those that can be released quickly. It requires a forced
gargabe collection call at the end of the BAT’s lifespan. Impact: large Status: Implemented.
Algorithm based on end-of-life-span analysis.

Foreign Key replacements Goal: to improve multi-attribute joins over foreign key con-
straints Rationale: the code produced by the SQL frontend involves foreign key constraints,
which provides many opportunities for speedy code using a join index. Impact: large Status:
Implemented in the SQL strategic optimizer.

7.1.1 Optimizer Dependencies

The optimizers are highly targeted to a particular problem. Aside from the resources
available to invest in plan optimization, optimizers are partly dependent and may interfere.

To aid selection of the components of interest, we have grouped them in a preferred
order of deployment.
Group A: Code Inliner.

Constant Expression Evaluator.
Relational Expression Evaluator.
Strength Reduction.

Group B: Common Term Optimizer.
Query Evaluation Maps.

Chapter 7: The MAL Optimizer 120

Group C: Join Path Optimizer.
Ranges Propagation.
Operator Cost Reduction.
Operator Sort.
Foreign Key handling.
Aggregate Groups.
Data Cube optimizer.
Heuristic Rule Rewrite.

group D: Code Parallizer.
Accumulator Evaluations.
Result Cacher.
Replication Manager.

group E: MAL Compiler.
Dynamic Query Scheduler.
Vector Execution.
Staged Execution.

group F: Alias Removal.
Dead Code Removal.
Garbage Collector.

The interaction also excludes combinations. For example, the Accumulator should be
used after the Partition optimizer.

7.1.2 Optimizer Building Blocks

Some instructions are independent of the execution context. In particular, expressions over
side-effect free functions with constant parameters could be evaluated before the program
block is considered further.

A major task for an optimizer is to select instruction (sequences) which can and should
be replaced with cheaper ones. The cost model underlying this decision depends on the
processing stage and the overall objective. For example, based on a symbolic analysis their
may exist better implementations within the interpreter to perform the job (e.g. hashjoin
vs mergejoin). Alternative, expensive intermediates may be cached for later use.

Plan enumeration is often implemented as a Memo structure, which designates alterna-
tive sub-plans based on a cost metric. Perhaps we can combine these memo structures into
a large table for all possible combinations encountered for a user.

The MAL language does not imply a specific optimizer to be used. Its programs are
merely a sequence of specifications, which is interpreted by an engine specific to a given
task. Activation of the engine is controlled by a scenario, which currently includes two
hooks for optimization; a strategic optimizer and a tactical optimizer. Both engines take
a MAL program and produce a (new/modified) MAL program for execution by the lower
layers.

MAL programs end-up in the symbol table linked to a user session. An optimizer has the
freedom to change the code, provided it is known that the plan derived is invariant to changes
in the environment. All others lead to alternative plans, which should be collected as a trail

Chapter 7: The MAL Optimizer 121

of MAL program blocks. These trails can be inspected for a posteriori analysis, at least in
terms of some statistics on the properties of the MAL program structures automatically.
Alternatively, the trail may be pruned and re-optimized when appropriate from changes in
the environment.

The rule applied for all optimizers is to not-return before checking the state of the MAL
program, and to assure the dataflow and variable scopes are properly set. It costs some
performance, but the difficulties that arise from optimizer interference are very hard to
debug. One of the easiest pitfalls is to derive an optimized version of a MAL function while
it is already referenced by or when polymorphic typechecking is required afterwards.

7.1.3 Building Your Own Optimizer

Implementation of your own MAL-MAL optimizer can best be started from refinement of
one of the examples included in the code base. Beware that only those used in the critical
path of SQL execution are thorouhly tested. The others are developed up to the point that
the concept and approach can be demonstrated.

The general structure of most optimizers is to actively copy a MAL block into a new
program structure. At each step we determine the action taken, e.g. replace the instruction
or inject instructions to achieve the desired goal.

A tally on major events should be retained, because it gives valuable insight in the
effectiveness of your optimizer. The effects of all optimizers is collected in a system catalog.

Each optimizer ends with a strong defense line, optimizerCheck() It performs a com-
plete type and data flow analysis before returning. Moreover, if you are in debug mode,
it will keep a copy of the plan produced for inspection. Studying the differences between
optimizer steps provide valuable information to improve your code.

The functionality of the optimizer should be clearly delineated. The guiding policy is
that it is always safe to not apply an optimizer step. This helps to keep the optimizers as
independent as possible.

It really helps if you start with a few tiny examples to test your optimizer. They should
be added to the Tests directory and administered in Tests/All.

Breaking up the optimizer into different components and grouping them together in
arbitrary sequences calls for careful programming.

One of the major hurdles is to test interference of the optimizer. The test set is a good
starting point, but does not garantee that all cases have been covered.

In principle, any subset of optimizers should work flawlessly. With a few tens of opti-
mizers this amounts to potential millions of runs. Adherence to a partial order reduces the
problem, but still is likely to be too resource consumptive to test continously.

7.1.4 Optimizer framework

The large number of query transformers calls for a flexible scheme for the deploy them.
The approach taken is to make all optimizers visible at the language level as a signature
optimizer.F() and optimizer.F(mod,fcn). The latter designates a target function to be
inspected by the optimizer F(). Then (semantic) optimizer merely inspects a MAL block
for their occurrences and activitates it.

Chapter 7: The MAL Optimizer 122

The optimizer routines have access to the client context, the MAL block, and the program
counter where the optimizer call was found. Each optimizer should remove itself from the
MAL block.

The optimizer repeatedly runs through the program until no optimizer call is found.

Note, all optimizer instructions are executed only once. This means that the instruction
can be removed from further consideration. However, in the case that a designated function
is selected for optimization (e.g., commonTerms(user,qry)) the pc is assumed 0. The first
instruction always denotes the signature and can not be removed.

To safeguard against incomplete optimizer implementations it is advisable to perform
an optimizerCheck at the end. It takes as arguments the number of optimizer actions taken
and the total cpu time spent. The body performs a full flow and type check and re-initializes
the lifespan administration. In debugging mode also a copy of the new block is retained for
inspection.

7.1.5 Lifespan analysis

Optimizers may be interested in the characteristic of the barrier blocks for making a de-
cision. The variables have a lifespan in the code blocks, denoted by properties beginLifes-
pan,endLifespan. The beginLifespan denotes the intruction where it receives its first value,
the endLifespan the last instruction in which it was used as operand or target.

If, however, the last use lies within a BARRIER block, we can not be sure about its end
of life status, because a block redo may implictly revive it. For these situations we associate
the endLifespan with the block exit.

In many cases, we have to determine if the lifespan interferes with a optimization decision
being prepared. The lifespan is calculated once at the beginning of the optimizer sequence.
It should either be maintained to reflect the most accurate situation while optimizing the
code base. In particular, it means that any move/remove/addition of a MAL instruction
calls for either a recalculation or further propagation. Unclear what will be the best strategy.
For the time being we just recalc.

The safety property should be relatively easy to determine for each MAL function. This
calls for accessing the function MAL block and to inspect the arguments of the signature.

Any instruction may block identification of a common subexpression. It suffices to
stumble upon an unsafe function whose parameter lists has a non-empty intersection with
the targeted instruction. To illustrate, consider the sequence

L1 := f(A,B,C);
...
G1 := g(D,E,F);
...
l2:= f(A,B,C);
...
L2:= h()

The instruction G1:=g(D,E,F) is blocking if G1 is an alias for {A,B,C}. Alternatively,
function g() may be unsafe and {D,E,F} has a non-empty intersection with {A,B,C}. An
alias can only be used later on for readonly (and not be used for a function with side effects).

Chapter 7: The MAL Optimizer 123

7.1.6 Flow analysis

In many optimization rules, the data flow dependency between statements is of crucial
importance. The MAL language encodes a multi-source, multi-sink dataflow network. Op-
timizers typically extract part of the workflow and use the language properties to enumerate
semantic equivalent solutions, which under a given cost model turns out to result in better
performance.

The flow graph plays a crucial role in many optimization steps. It is unclear as yet what
primitives and what storage structure is most adequate. For the time being we introduce
the operations needed and evaluate them directly against the program

For each variable we should determine its scope of stability. End-points in the flow graph
are illustrative as dead-code, that do not produce persistent data. It can be removed when
you know there are no side-effect.

Side-effect free evaluation is a property that should be known upfront. For the time
being, we assume it for all operations known to the system. The property "unsafe" is
reserved to identify cases where this does not hold. Typically, a bun-insert operation is
unsafe, as it changes one of the parameters.

7.2 Optimizer Toolkit

In this section, we introduce the collection of MAL optimizers included in the code base.
The tool kit is incrementally built, triggered by experimentation and curiousity. Several
optimizers require further development to cope with the many features making up the
MonetDB system. Such limitations on the implementation are indicated where appropriate.

Experience shows that construction and debugging of a front-end specific optimizer is
simplified when you retain information on the origin of the MAL code produced as long as
possible. For example, the snippet sql.insert(col, 12@0, "hello") can be the target
of simple SQL rewrites using the module name as the discriminator.

7.2.1 Access mode optimization

The routine optimizer.accessmode() reduces the number of read/write mode changes of
variables to a minimum. Especially setting a BAT to write mode is expensive, because it
often implies creation of a private copy first.

A full implementation is delayed until really needed.

7.2.2 Accumulator Evaluations

Bulk arithmetic calculations are pretty expensive, because new bats are created for each
expression. This memory hunger can be reduced by detecting opportunities for accummu-
lator processing, i.e. where a (temporary) variable is overwritten. For example, consider
the program snippet

t3:= batcalc.*(64,t2);
t4:= batcalc,+(t1,t3);
optimizer.accumulators();

If variable t2 is a temporary variable and not used any further in the program block, we
can re-use its storage space and propagate its alias through the remainder of the code.

Chapter 7: The MAL Optimizer 124

batcalc.*(t2,64,t2);
t4:= batcalc.+(t2,t1,t2);

The implementation is straight forward. It only deals with the arithmetic operations
available in batcalc right now. This set will be gradually be extended. The key decision
is to determine whether we may overwrite any of the arguments. This is hard to detect
at compile time, e.g. the argument may be the result of a binding operation or represent
a view over a persistent BAT. Therefore, the compiler injects the call algebra.reuse(),
which avoids overwriting persistent BATs by taking a copy.

7.2.3 Alias Removal

The routine optimizer.aliasRemoval() walks through the program looking for simple
assignment statements, e.g. V:=W. It replaces all subsequent occurrences of V by W,
provided V is assigned a value once and W does not change in the remainder of the code.
Special care should be taken for iterator blocks as illustrated in the case below:

i:=0;
b:= "done";

barrier go:= true;
c:=i+1;
d:="step";
v:=d;
io.print(v);
i:=c;

redo go:= i<2;
exit go;

io.print(b);
optimizer.aliasRemoval();

The constant strings are propagated to the print() routine, while the initial assigment
i:=0 should be retained. The code block becomes:

i:=0;
barrier go:= true;

c:=i+1;
io.print("step");
i:=c;

redo go:= i<2;
exit go;

io.print("done");

7.2.4 Code Factorization

In most real-life situations queries are repeatedly called with only slight changes in their
parameters. This situation can be captured by the query compilers by keeping a cache of
recent query plans. In MonetDB context such queries are represented as parameterized
MAL programs.

To further optimize the cached functions it might help to split the query plan into two
sections. One section with those actions that do not depend on the arguments given and
another section that contains the heart of the query using all information. Such a program
can be represented by a MAL factory, which is a re-entrend query plan.

Chapter 7: The MAL Optimizer 125

An example of how factorize changes the code is shown below:
function test(s:str):lng;

b:= bat.new(:int,:str);
bat.insert(b,1,"hello");
z:= algebra.select(b,s,s);
i:= aggr.count(z);
return i;

end test;
optimizer.factorize("user","test");

which translates into the following block:
factory user.test(s:str):lng;

b := bat.new(:int,:str);
bat.insert(b,1,"hello");

barrier always := true;
z := algebra.select(b,s,s);
i := aggr.count(z);
yield i;
redo always;

exit always;
end test;

The factorizer included is a prototype implementation of MAL factorization. The ap-
proach taken is to split the program into two pieces and wrap it as a MAL factory. The
optimization assumes that the database is not changed on tables accessed only once during
the factory lifetime. Such changes should be detected from the outside and followed by
re-starting the factory.

A refined scheme where the user can identify the ’frozen’ parameters is left for the future.
As the mapping of a query to any of the possible available factories to deal with the request.
For the time being we simple reorganize the plan for all parameters

The factorize operation interferes with optimizer.expressionAccumulation() be-
cause that may overwrite the arguments. For the time being, this is captured in a local
routine.

7.2.5 Coercion Removal

A simple optimizer that removes coercions that are not needed. They may result from a
sloppy code-generator or function call resolution decision. For example:

v:= calc.int(23);

becomes a single assignment without function call.
The primary role is a small illustration of coding an optimizer algorithm.

7.2.6 Common Subexpression Elimination

Common subexpression elimination merely involves a scan through the program block to
detect re-curring statements. The key problem to be addressed is to make sure that the
parameters involved in the repeatative instruction are invariant.

The analysis of optimizer.commonTerms() is rather crude. All functions with possible
side-effects on their arguments should have been marked as ’unsafe’. Their use within a

Chapter 7: The MAL Optimizer 126

MAL block breaks the dataflow graph for all objects involved (BATs, everything kept in
boxes).

The common subexpression optimizer locates backwards the identical instructions. It
stops as soon as it has found an identical one. Before we can replace the expression with the
variable(s) of the previous one, we should assure that we haven;t passed a safety barrier.

b:= bat.new(:int,:int);
c:= bat.new(:int,:int);
d:= algebra.select(b,0,100);
e:= algebra.select(b,0,100);
k1:= 24;
k2:= 27;
l:= k1+k2;
l2:= k1+k2;
l3:= l2+k1;
optimizer.commonTerms();

is translated into the code block where the first two instructions are not common, because
they have side effects.

b := bat.new(:int,:int);
c := bat.new(:int,:int);
d := algebra.select(b,0,100);
e := d;
l := calc.+(24,27);
l3 := calc.+(l,24);

7.2.7 Constant Expression Evaluation

Expressions produced by compilers involving only constant arguments can be evaluated
once. It is particular relevant in functions that are repeatably called. One time queries
would not benefit from this extra step.

Consider the following snippet, which contains recursive use of constant arguments

a:= 1+1; io.print(a);
b:= 2; io.print(b);
c:= 3*b; io.print(c);
d:= calc.flt(c);io.print(d);
e:= mmath.sin(d);io.print(e);
optimizer.aliasRemoval();
optimizer.evaluate();

The code produced by the optimizer would be

io.print(2);
io.print(2);
io.print(6);
io.print(6);
io.print(-0.279415488);

Chapter 7: The MAL Optimizer 127

7.2.8 Costmodel Approach

Cost models form the basis for many optimization decisions. The cost parameters are
typically the size of the (intermediate) results and response time. Alternatively, they are
running aggregates, e.g. max memory and total execution time, obtained from a simulated
run. The current implementation contains a framework and an example for building your
own cost-based optimized.

The optimizer.costModel() works its way through a MAL program in search for
relational operators and estimates their result size. The estimated size is left behind as the
property rows.

r{rows=100} := bat.new(:oid,:int);
s{rows=1000}:= bat.new(:oid,:int);
rs:= algebra.select(s,1,1);
rr:= bat.reverse(r);
j:= algebra.join(rs,rr);
optimizer.costModel();

changes the properties of the instructions as follows:
r{rows=100} := bat.new(:oid,:int);
s{rows=1000} := bat.new(:oid,:int);
rs{rows=501} := algebra.select(s,1,1);
rr{rows=100} := bat.reverse(r);
j{rows=100} := algebra.join(rs,rr);

The cost estimation does not use any statistics on the actual data distribution yet. It
relies on the rows property provided by the front-end or other optimizers. It just applies a
few heuristic cost estimators. However, it ensures that empty results are only tagged with
rows=0 if the estimate is accurate, otherwise it assumes at least one result row. This
property makes it possible to safely pass the result of the cost estimation to the emptySet
optimizer for code reduction.

7.2.9 Dead Code Removal

Dead code fragments are recognized by assignments to variables whose value is not consumed
any more. It can be detected by marking all variables used as arguments as being relevant.
In parallel, we built a list of instructions that should appear in the final result. The new
code block is than built in one scan, discarding the superflous instructions.

Instructions that produce side effects to the environment, e.g., printing and BAT up-
dates, should be taken into account. Such (possibly recursive) functions should be marked
with a property (unsafe). For now we recognize a few important ones Likewise, instructions
marked as control flow instructions should be retained.

An illustrative example is the following MAL snippet:
V7 := bat.new(:oid,:int);
V10 := bat.new(:int,:oid);
V16 := algebra.markH(V7);
V17 := algebra.join(V16,V7);
V19 := bat.new(:oid,:int);
V22 := bat.new(:oid,:int);
V23 := algebra.join(V16,V22);

Chapter 7: The MAL Optimizer 128

io.print("done");
optimizer.deadCodeRemoval();

The dead code removal trims this program to the following short block:
io.print("done");

A refinement of the dead code comes from using arguments that ceased to exist due to
actions taken by an optimizer. For example, in the snippet below the pushranges optimizer
may conclude that variable V31 becomes empty and simply injects a ’dead’ variable by
dropping the assignment statement. This makes other code dead as well.

V30 := algebra.select(V7, 10,100);
V31 := algebra.select(V30,-1,5);
V32 := aggr.sum(V31);
io.print(V32);

[implementation pending]

7.2.10 Emptyset Reduction

One of the key decisions during MAL optimization is to estimate the size of the BATs
produced and consumed. Two cases are of interest for symbolic processing. Namely, when
a BAT is known to contain no tuples and those that have precisely one element. Such
information may come from application domain knowledge or as a side effect from symbolic
evaluation. It is associated with the program under inspection as properties.

The empty set property is used by the reduction algorithm presented here. Any empty
set is propagated through the program to arrive at a smaller and therefore faster evaluation.

For example, consider the following MAL test:
V1 := bat.new(:oid,:int);
V7 := bat.new(:oid,:int);
V10{rows=0} := bat.new(:int,:oid);
V11 := bat.reverse(V10);
V12 := algebra.kdifference(V7,V11);
V16 := algebra.markH(V12);
V17 := algebra.join(V16,V7);
bat.append(V1,V17);

optimizer.costModel();
optimizer.emptySet();

Calling the optimizers replaces this program by the following code snippet.
V1 := bat.new(:oid,:int);
V7 := bat.new(:oid,:int);
V10{rows=0} := bat.new(:int,:oid);
V11{rows=0} := bat.new(:oid,:int);
V12 := V7;
V16 := algebra.markH(V12);
V17 := algebra.join(V16,V7);
bat.append(V1,V17);

This block can be further optimized using alias propagation and dead code removal. The
final block becomes:

Chapter 7: The MAL Optimizer 129

V1 := bat.new(:oid,:int);
V7 := bat.new(:oid,:int);
V16 := algebra.markH(V7);
V17 := algebra.join(V16,V7);
bat.append(V1,V17);

During empty set propagation, new candidates may appear. For example, taking the
intersection with an empty set creates a target variable that is empty too. It becomes an
immediate target for optimization. The current implementation is conservative. A limited
set of instructions is considered. Any addition to the MonetDB instruction set would call
for assessment on their effect.

7.2.11 SQL specifics

The bind operations of SQL requires special care, because they refer to containers that
might initially be empty, but aren’t upon a second call. This calls for a defensive approach,
where a constraint check is left behind to detect a plan whose conditions are not met
anymore. Of course, we can drop the constraint if we know that a plan is used onlye once
(and not recursively). This can be marked by the SQL compiler, who is in control over the
query cache.

7.2.12 Garbage Collection

Garbage collection of temporary variables, such as strings and BATs, takes place upon
returning from a function call. Especially for BATs this may keep sizable resources locked
longer than strictly necessary. Although the programmer can influence their lifespan by
assignment of the nil, thereby triggering the garbage collector, it is more appropriate to
rely on an optimizer to inject these statements. For, it keeps the program smaller and a
better target for code-optimizations.

The operation optimizer.garbageCollector() removes all BAT references that are
at their end of life to make room for new ones. It is typically called as one of the last
optimizer steps. A snippet of a the effect of the garbage collector:

t1 := bat.new(:oid,:int);
t2 := array.grid(132000,8,1,0);
t3 := array.grid(1,100,10560,0);
t4 := array.grid(1,100,10560,0,8);
t5 := batcalc.+(t2,t4);
t6 := batcalc.oid(t5);
t7 := algebra.join(t6,t1);
optimizer.garbageCollector();

is translated into the following code block:

t1 := bat.new(:oid,:int);
t2 := array.grid(132000,8,1,0);
t3 := array.grid(1,100,10560,0);
t4 := array.grid(1,100,10560,0,8);
t5 := batcalc.+(t2,t4);
bat.setGarbage(t2);
bat.setGarbage(t4);

Chapter 7: The MAL Optimizer 130

t6 := batcalc.oid(t5);
bat.setGarbage(t5);
t7 := algebra.join(t6,t1);
bat.setGarbage(t6);
bat.setGarbage(t1);

The current algorithm is straight forward. After each instruction, we check whether its
BAT arguments are needed in the future. If not, we inject a garbage collection statement to
release them, provided there are no other reasons to retain it. This should be done carefully,
because the instruction may be part of a loop. If the variable is defined inside the loop, we
can safely remove it.

7.2.13 Heuristic rewrites rules

One of the oldest optimizer tricks in relational query processing is to apply heuristic rules
to reduce the processing cost. For example, a selection predicate is pushed through another
operator to reduce the number of tuples to consider. Heuristic rewrites are relatively easy to
apply in a context where the expression is still close to a relational algebra tree. Therefore,
many of the standard rewrite rules are already applied by the SQL front-end as part of its
strategic optimization decisions.

Finding rewrite opportunities within a linear MAL program may be more difficult. For
example, the pattern should respect the flow of control that may already be introduced.
The last resort for the optimizer builder is to write a C-function to look for a pattern of
interest and transform it. The code base contains an example how to built such user specific
optimizer routines. It translates the pattern:

y:= reverse(R);
z:= select(y,l,h);

into the statement:
z:= selectHead(x,R,l,h)

7.2.14 Join Paths

The routine optimizer.joinPath() walks through the program looking for join operations
and cascades them into multiple join paths.

a:= bat.new(:oid,:oid);
b:= bat.new(:oid,:oid);
c:= bat.new(:oid,:str);
j1:= algebra.join(a,b);
j2:= algebra.join(j1,c);
j3:= algebra.join(b,b);
j4:= algebra.join(b,j3);

The result includes the expanded join expressions. The deadcode optimizer should take
care of superflous paths.

a:= bat.new(:oid,:oid);
j1:= algebra.join(a,b);
j2:= algebra.joinPath(a,b,c);
j3:= algebra.join(b,b);
j4:= algebra.joinPath(b,b,b);

Chapter 7: The MAL Optimizer 131

7.2.15 Macro and Orcam Processing

The optimizers form the basis for replacing code fragments. Two optimizers are focused on
code expansion and contraction. The former involves replacing individual instructions by a
block of MAL code, i.e. a macro call. The latter depicts the inverse operation, a group of
instructions is replaced by a single MAL assignment statement, i.e. a orcam call.

The macro facility is limited to type-correct MAL functions, which means that replace-
ment is not essential from a semantic point of view. They could have been called, or the
block need not be compressed. It is equivalent to inline code expansion.

The macro and orcam transformations provide a basis to develop front-end specific
code generation templates. The prototypical test case is the following template:

function user.joinPath(a:bat[:any_1,:any_2],
b:bat[:any_2,:any_3],
c:bat[:any_3,:any_4]):bat[:any_1,:any_4]

address fastjoinpath;
z:= join(a,b);
zz:= join(z,c);
return zz;

end user.joinPath;

The call optimizer.macro("user", "joinPath") hunts for occurrences of the instruc-
tion call in the block in which it is called and replaces it with the body, i.e. it in-lines
the code. Conversely, the optimizer.orcam("user", "joinPath") attempts to localize a
block of two join operations and, when found, it is replaced by the direct call to joinPath.
In turn, type resolution then directs execution to a built-in function fastjoinpath.

The current implementation is limited to finding a consecutive sequence, ending in a
return-statement. The latter is needed to properly embed the result in the enclosed envi-
ronment. It may be extended in the future to consider the flow of control as well.

7.2.16 Known issues

The functions subject to expansion or contraction should be checked on ’proper’ behavior.

The current implementation is extremely limited. The macro optimizer does not recog-
nize use of intermediate results outside the block being contracted. This should be checked
and it should block the replacement, unless the intermediates are part of the return list.
Likewise, we assume here that the block has a single return statement, which is also the
last one to be executed.

The macro optimizer can only expand functions. Factories already carry a significant
complex flow of control that is hard to simulate in the nested flow structure of an arbitrary
function.

The orcam optimizer can not deal with calls controlled by a barrier. It would often
require a rewrite of several other statements as well.

pattern optimizer.macro(targetmod:str,targetfcn:str):void
address OPTmacro
comment "Inline the code of the target function.";
pattern optimizer.macro(mod:str,fcn:str,targetmod:str,targetfcn:str):void
address OPTmacro

Chapter 7: The MAL Optimizer 132

comment "Inline a target function used in a specific function.";

pattern optimizer.orcam(targetmod:str,targetfcn:str):void
address OPTorcam
comment "Inverse macro processor for current function";
pattern optimizer.orcam(mod:str,fcn:str,targetmod:str,targetfcn:str):void
address OPTorcam
comment "Inverse macro, find pattern and replace with a function call.";

7.2.17 Merge Tables

A merge association table (MAT) descriptor defines an ordered collection of type compatible
BATs, whose union represents a single (virtual) BAT. The MAT may represent a partitioned
BAT (see BPM), but could also be an arbitrary collection of temporary BATs within a
program fragment.

The MAT definition lives within the scope of a single block. The MAT optimizer simply
expands the plan to deal with its components on an instruction basis. Only when a blocking
operator is encounted, the underlying BAT is materialized.

The MAT object can not be passed as an argument to any function without first being
materialized. Simply because the MAT is not known by the type system and none of the
lower level operations is aware of their existence.

In the first approach of the MAT optimizer we assume that the first BAT in the MAT
sequence is used as an accumulator. Furthermore, no semantic knowledge is used to reduce
the possible superflous (semi)joins. Instead, we limit expansion to a single argument. This
is changed at a later stage when a cost-based evaluation be decide differently.

To illustrate, consider:
m0:= bat.new(:oid,:int);
m1:= bat.new(:oid,:int);
m2:= bat.new(:oid,:int);
b := mat.new(m0,m1,m2);
s := algebra.select(b,1,3);
i := algebra.count(s);
io.print(s);
io.print(i);
c0 := bat.new(:int,:int);
c1 := bat.new(:int,:int);
c := mat.new(c0,c1);
j := algebra.join(b,s);
io.print(j);

The selection and aggregate operations can simply be rewritten using a MAT:
_33 := algebra.select(m0,1,3);
_34 := algebra.select(m1,1,3);
_35 := algebra.select(m2,1,3);

s := mat.new(_33,_34,_35);
i := 0:int;

Chapter 7: The MAL Optimizer 133

_36 := aggr.count(_33);
i := calc.+(i,_36);
_37 := aggr.count(_34);
i := calc.+(i,_37);
_38 := aggr.count(_35);
i := calc.+(i,_38);
io.print(i);

The print operation does not have MAT semantics yet. It requires a function that does
not produce the header with each call. Instead, we can also pack the elements before
printing.

s := mat.pack(_33,_34,_35);
io.print(s);

For the join we have to generate all possible combinations, not knowing anything about
the properties of the components. The current heuristic is to limit expansion to a single
argument. This leads to

b := mat.pack(m0,m1,m2);
_39 := algebra.join(b,c0);
_40 := algebra.join(b,c1);
j := mat.new(_39,_40);

The drawback of the scheme is the potential explosion in MAL statements. A challenge
of the optimizer is to find the minimum by inspection of the properties of the MAT elements.
For example, it might attempt to partially pack elements before proceding. This would be
a runtime scheduling decision.

Alternative, the system could use MAT iterators to avoid it. At the cost of more complex
program analysis afterwards.

ji:= bat.new(:oid,:int);
barrier b:= mat.newIterator(m0,m1,m2);
barrier c:= mat.newIterator(c0,c1);
ji := algebra.join(b,c);
bat.insert(j,ji);
redo c:= mat.newIterator(c0,c1);
redo b:= mat.newIterator(m0,m1,m2);
exit c;
exit b;

7.2.18 Multiplex Compilation

The MonetDB operator multiplex concept has been pivotal to easily apply any scalar
function to elements in a containers. Any operator cmd came with its multiplex
variant [cmd]. Given the signature cmd(T1,..,Tn) : Tr, it could be applied also as
[CMD](bat[:any 1,:T1],...,bat[any 1,Tn]) :bat[any 1,Tr].

The semantics of the multiplex is to perform the positional join on all bat-valued pa-
rameters, and to execute the CMD for each combination of matching tuples. All results are
collected in a result BAT. All but one argument may be replaced by a scalar value.

The generic solution to the multiplex operators is to translate them to a MAL loop. A
snippet of its behaviour:

Chapter 7: The MAL Optimizer 134

b:= bat.new(:int,:int);
bat.insert(b,1,1);
c:bat[:int,:int]:= mal.multiplex("calc.+",b,1);

optimizer.multiplex();

The current implementation requires the target type to be mentioned explicitly. The
result of the optimizer is:

b := bat.new(:int,:int);
bat.insert(b,1,1);
_8 := bat.new(:int,:int);

barrier (_11,_12,_13):= bat.newIterator(b);
_15 := calc.+(_13,1);
bat.insert(_8,_12,_15);
redo (_11,_12,_13):= bat.hasMoreElements(b);

catch MALException;
#ignore any error

redo (_11,_12,_13):= bat.hasMoreElements(b);
exit MALException;
exit (_11,_12,_13);

c := _8;

7.2.19 BAT Partitions

Limitations on the addressing space in older PCs and the need for distributed storage makes
that BATs ideally should be looked upon as a union of smaller BATs which are processed
within the (memory) resource limitations given.

The partition() optimizer with the supportive bat partition library bpm addresses the
issue with an adaptive database segmentation algorithm. It is designed incrementally with
a focus on supporting the SQL front-end. In particularly, the operators considered is a
limited subset of MAL. Occurrence of an operator outside this set terminates the optimizer
activities.

The operation optimizer.partitions() hunts for bindings of SQL column BATs and
prepare code for using partitioned versions instead.

We use two implementations. The first one attempts to find segments of linear dependent
data and builds an iterator around it. This approach is tricky, because you have to take care
of special cases. In particular, the semantics of the operators on the sequence construction
posed quite some problems.

The naive() approach simply looks at individual operations and surround them with an
iterator. An alias table is kept around for re-use and detect already partitioned operands.
The drawback is that potentially a partitioned BAT is read multiple times [it depends on the
re-use of variables, which can be calculated] and write+read of intermediates. Experiments
should demonstrate the optimal one.

7.2.20 Peephole optimization

Recursive descend query compilers easily miss opportunities for better code generation,
because limited context is retained or lookahead available. The peephole optimizer is built
around such recurring patterns and compensates for the compilers ’mistakes’. The collection
of peephole patterns should grow over time and front-end specific variations are foreseen.

Chapter 7: The MAL Optimizer 135

The SQL frontend heavily relies on a pivot table, which is a generated oid sequence. Un-
fortunately, this is not seen and the pattern ’$i := calc.oid(0@0); $j:= algebra.markT($k,$i);’
occurs often. This can be replaced with ’$j:= algebra.markT($k)’;

Another example of a 2-way instruction sequence produced is then ’$j:= alge-
bra.markT($k); $l:= bat.reverse($j);’, which can be replaced by ’$l:= algebra.markH($k);’.

The reverse-reverse operation also falls into this category. Reversal pairs may result from
the processing scheme of a front-end compiler or from a side-effect from other optimization
steps. Such reversal pairs should be removed as quickly as possible, so as to reduce the
complexity of finding alternative optimization opportunities. As in all cases we should
ensure that the intermediates dropped are not used for other purposes as well.

r:bat[:int,:int]:= bat.new(:int,:int);
o:= calc.oid(0@0);
z:= algebra.markT(r,o);
rr:= bat.reverse(z);
s := bat.reverse(r);
t := bat.reverse(s);
io.print(t);
optimizer.peephole();

which is translated by the peephole optimizer into:
r:bat[:int,:int] := bat.new(:int,:int);
rr := algebra.markH(r);
io.print(r);

7.2.21 Query Execution Plans

A commonly used data structure to represent and manipulate a query is a tree (or graph).
Its nodes represent the operators and the leaves the operands. Such a view comes in handy
when you have to re-organize whole sections of code or to built-up an optimized plan bottom
up, e.g. using a memo structure.

The MAL optimizer toolkit provides functions to overlay the body of any MAL block
with a tree (graph) structure and to linearize them back into a MAL block. The linearization
order is determined by a recursive descend tree walk from the anchor points in the source
program.

To illustrate, consider the code block:
#T1:= bat.new(:int,:int);
#T2:= bat.new(:int,:int);
#T3:= bat.new(:int,:int);
#T4:= bat.new(:int,:int);
a:= algebra.select(T1,1,3);
b:= algebra.select(T2,1,3);
c:= algebra.select(T3,0,5);
d:= algebra.select(T4,0,5);
e:= algebra.join(a,c);
f:= algebra.join(b,d);
h:= algebra.join(e,f);

Chapter 7: The MAL Optimizer 136

optimizer.dumpQEP();

which produces an indented structure of the query plan.
h := algebra.join(e,f);

e := algebra.join(a,c);
a := algebra.select(T1,1,3);

T1 := bat.new(:int,:int);
c := algebra.select(T3,0,5);

T3 := bat.new(:int,:int);
f := algebra.join(b,d);

b := algebra.select(T2,1,3);
T2 := bat.new(:int,:int);

d := algebra.select(T4,0,5);
T4 := bat.new(:int,:int);

Any valid MAL routine can be overlayed with a tree (graph) view based on the flow
dependencies, but not all MAL programs can be derived from a simple tree. For example,
the code snippet above when interpreted as a linear sequence can not be represented unless
the execution order itself becomes an operator node itself.

However, since we haven’t added or changed the original MAL program, the routine
qep.propagate produces the orginial program, where the linear order has priority. If,
however, we had entered new instructions into the tree, they would have been placed in
close proximity of the other tree nodes.

Special care is given to the flow-of-control blocks, because to produce a query plan section
that can not easily be moved around. [give dot examples]

7.2.22 Range Propagation

Almost all queries are interested in a few slices of the table. If applied to a view, the query
plans often contain multiple selections over the same column. They may also have fixed
range arguments comming from fragmentation criteria.

The purpose of the pushranges optimizer is to minimize the number of table scans by
cascading the range terms as much as possible. Useless instructions are removed from the
plan.

b := bat.new(:oid,:int);
s1:= algebra.select(b,1,100);
s2:= algebra.select(s1,5,95);
s3:= algebra.select(s2,50,nil);
s4:= algebra.select(s3,nil,75);
optimizer.pushranges();

This lengthly sequence can be compressed into a single one:
b := bat.new(:oid,:int);
s1:= algebra.select(b,50,75);

A union over two range selections from a single source could also be a target.
t1:= algebra.select(b,1,10);
t2:= algebra.select(b,0,5);
t3:= algebra.union(t1,t2);

Chapter 7: The MAL Optimizer 137

would become

t3:= algebra.select(0,10);

7.2.23 Remote Queries

MAL variables may live at a different site from where they are used. In particular, the
SQL front-end uses portions of remote BATs as replication views. Each time such a view
is needed, the corresponding BAT is fetched and added to the local cache.

Consider the following snippet produced by a query compiler,

mid:= mserver.reconnect("s0_0","localhost",50000,"monetdb","monetdb","mal");
b:bat[:oid,:int] := mserver.bind(mid,"rvar");
c:=algebra.select(b,0,12);
io.print(c);
d:=algebra.select(b,5,10);
low:= 5+1;
e:=algebra.select(d,low,7);
i:=aggr.count(e);
io.printf(" count %d\n",i);
io.print(d);

which uses a BAT rvar stored at the remote site db1.

There are several options to execute this query. The remote BAT can be fetched as soon
as the bind operation is executed, or a portion can be fetched after a remote select, or the
output for the user could be retrieved. An optimal solution depends on the actual resources
available at both ends and the time to ship the BAT.

The remote query optimizer assumes that the remote site has sufficient resources to
handle the instructions. For each remote query it creates a private connection. It is re-used
in subsequent calls .

The remote environment is used to execute the statements. The objects are retrieved
just before they are locally needed.

mid:= mserver.reconnect("s0_0","localhost",50000,"monetdb","monetdb","mal");
mserver.rpc(mid,"b:bat[:oid,:int] :=bbp.bind(\"rvar\");");
mserver.rpc(mid,"c:=algebra.select(b,0,12);");
c:bat[:oid,:int]:= mserver.rpc(mid, "io.print(c);");
io.print(c);
mserver.rpc(mid,"d:=algebra.select(b,5,10);");
low:= 5+1;
mserver.put(mid,"low",low);
mserver.rpc(mid,"e:=algebra.select(d,low,7);");
mserver.rpc(mid,"i:=aggr.count(d);");
i:= mserver.rpc(mid,"io.print(i);");
io.printf(" count %d\n",i);
io.print(d);

To reduce the number of interprocess communications this code can be further improved
by glueing the instructions together when until the first result is needed.

Chapter 7: The MAL Optimizer 138

7.2.24 Singleton Set Reduction

Application semantics and precise cost analysis may identify the result of an operation to
produce a BAT with a single element. Such variables can be tagged with the property
singleton, whereafter the operation optimizer.singleton() derives an MAL program
using a symbolic evaluation as far as possible.

During its evaluation, more singleton sets can be created, leading to a ripple effect
through the code. A non-optimizable instruction leads to a construction of a new table
with the single instance.

b:= bat.new(:int,:int);
bat.insert(b,1,2);
c{singleton}:= algebra.select(b,0,4);
d:= algebra.markH(c);
io.print(d);
optimizer.singleton();

is translated by into the code block

b := bat.new(:int,:int);
bat.insert(b,1,2);
c{singleton} := algebra.select(b,0,4);
(_15,_16):= bat.unpack(c{singleton});
d := bat.pack(nil,_16);
io.print(d);

7.2.25 Stack Reduction

The compilers producing MAL may generate an abundance of temporary variables to hold
the result of expressions. This leads to a polution of the runtime stack space, because space
should be allocated and garbage collection tests should be performed.

Likewise, constant duplicates are scattered around the stack. They are located and
merged.

The routine optimizer.reduce() reduces the number of scratch variables to a mini-
mum. All scratch variables of the same underlying type share the storage space. The result
of this optimizer can be seen using the MonetDB debugger, which marks unused variables
explicitly. Experience with the SQL front-end shows, that this optimization step easily
reduces the stack consumption by over 20\%.

This optimizer needs further testing. Furthermore, the other optimizers should be careful
in setting the isused property, or this property can again be easily derived.

7.2.26 Strength Reduction

An effective optimization technique in compiler construction is to move invariant statements
out of the loops. The equivalent strategy can be applied to the guarded blocks in MAL
programs. Any variable introduced in a block and assigned a value using a side-effect free
operation is a candidate to be moved. Furthermore, it may not be used outside the block
and the expression may not depend on variables assigned a value within the same block.

j:= "hello world";
barrier go:=true;

Chapter 7: The MAL Optimizer 139

i:= 23;
j:= "not moved";
k:= j;
io.print(i);
redo go:= false;

exit go;
z:= j;

optimizer.strengthReduction();

which is translated into the following code:
j := "hello world";
i := 23;

barrier go := true;
j := "not moved";
k := j;
io.print(i);
redo go:= false;

exit go;
z:= j;

Application is only applicable to loops and not to guarded blocks in general, because
execution of a statement outside the guarded block consumes processing resources which
may have been prohibited by the block condition.

For example, it doesn’t make sense to move creation of objects outside the barrier.

Chapter 8: The MAL Debugger 140

8 The MAL Debugger

In practice it is hard to write a correct MAL program the first time around. Instead, it is
more often constructed by trial-and-error. As long as there are syntax and semantic errors
the MAL compiler provides a sufficient handle to proceed. Once it passes the compiler we
have to resort to a debugger to assess its behavior.

Note, the MAL debugger described here can be used in conjunction with the textual
interface client mclient only. The JDBC protocol does not permit passing through infor-
mation that ’violates’ the protocol.

8.1 Program Debugging

To ease debugging and performance monitoring, the MAL interpreter comes with a gdb-like
debugger. An illustrative session elicits the functionality offered.

>function test(i:int):str;
> io.print(i);
> i:= i*2;
> b:= bat.new(:int,:int);
> bat.insert(b,1,i);
> io.print(b);
> return test:= "ok";
>end test;
>user.test(1);
[1]
#-----------------#
h t # name
int int # type
#-----------------#
[1, 2]

The debugger can be entered at any time using the call mdb.start(). An overview of the
available commands is readily available.

>mdb.start();
#mdb !end main;
mdb>help
next -- Advance to next statement
continue -- Continue program being debugged
catch -- Catch the next exception
break [<var>] -- set breakpoint on current instruction or <var>
delete [<var>] -- remove break/trace point <var>
debug <int> -- set kernel debugging mask
dot [<int>] [<file>] -- generate the dependency graph
step -- advance to next MAL instruction
module -- display a module signatures
atom -- show atom list
finish -- finish current call
exit -- terminate executionr

Chapter 8: The MAL Debugger 141

quit -- turn off debugging
list <obj> -- list current program block
List <obj> -- list with type information
var <obj> -- print symbol table for module
optimizer <obj> -- display program after optimizer step
print <var> -- display value of a variable
print <var> <cnt>[<first>] -- display BAT chunk
info <var> -- display bat variable properties
run -- restart current procedure
where -- print stack trace
down -- go down the stack
up -- go up the stack
trace <var> -- trace assignment to variables
set {timer,flow,io,memory,bigfoot} -- set trace switches
unset -- turn off switches
help -- this message
mdb>

The term <obj> is an abbreviation for a MAL operation <mod>.<fcn>, optionally ex-
tended with a version number, i.e. [<nr>]. The var denotes a variable in the current stack
frame. Debugger commands may be abbreviated.

We walk our way through a debugging session, highlighting the effects of the debugger
commands. The call to mdb.start() has been encapsulated in a complete MAL function,
as shown by issuing the list command. A more detailed listing shows the binding to the
C-routine and the result of type resolution.

>mdb.start();
#end main;
mdb>l
function user.main():int;
mdb.start();
end main;
mdb>L
function user.main():int; # 0 (main:int)
mdb.start(); # 1 MDBstart (_1:void)
end main; # 2

The user module is the default place for function defined at the console. The modules
loaded can be shown typeing the command ’module’ (or ’m’ for short). The function
signatures become visible using the module and optionally the function name.

mdb>m alarm
#command alarm.alarm(secs:int,action:str):void address ALARMsetalarm;
#command alarm.ctime():str address ALARMctime;
#command alarm.epilogue():void address ALARMepilogue;
#command alarm.epoch():int address ALARMepoch;
#command alarm.prelude():void address ALARMprelude;
#command alarm.sleep(secs:int):void address ALARMsleep;
#command alarm.time():int address ALARMtime;
#command alarm.timers():bat[:str,:str] address ALARMtimers;

Chapter 8: The MAL Debugger 142

#command alarm.usec():lng address ALARMusec;
mdb>m alarm.sleep
#command alarm.sleep(secs:int):void address ALARMsleep;
mdb>

The debugger mode is left with a <return>. Any subsequent MAL instruction re-activates
the debugger to await for commands. The default operation is to step through the execution
using the ’next’ (’n’) or ’step’ (’s) commands, as shown below.

>user.test(1);
user.test(1);
mdb>n
io.print(i);
mdb>
[1]
i := calc.*(i,2);
mdb>
b := bat.new(:int,:int);
mdb>

The last instruction shown is next to be executed. The result can be shown using a
print statement, which contains the location of the variable on the stack frame, its name,
its value and type. The complete stack frame becomes visible with ’values’ (’v’) command:

bat.insert(b,1,i);
mdb>
io.print(b);
mdb>v
#Stack for ’test’ size=32 top=11
#[0] test = nil:str
#[1] i = 4:int
#[2] _2 = 0:int unused
#[3] _3 = 2:int constant
#[4] b = <tmp_1226>:bat[:int,:int] count=1 lrefs=1 refs=0
#[5] _5 = 0:int type variable
#[6] _6 = nil:bat[:int,:int] unused
#[7] _7 = 1:int constant
#[8] _8 = 0:int unused
#[9] _9 = "ok":str constant

The variables marked ’unused’ have been introduced as temporary variables, but which
are not referenced in the remainder of the program. It also illustrates basic BAT properties,
a complete description of which can be obtained using the ’info’ (’i’) command. A sample
of the BAT content can be printed passing tuple indices, e.g. ’print b 10 10’ prints the
second batch of ten tuples.

8.2 Handling Breakpoints

A powerful mechanism for debugging a program is to set breakpoints during the debugging
session. The breakpoints are designated by a target variable name, a [module.]function
name, or a MAL line number (#<number>).

Chapter 8: The MAL Debugger 143

The snippet below illustrates the reaction to set a break point on assignment to variable
’i’.

>mdb.start();
#end main;
mdb>
>user.test(1);
user.test(1);
mdb>break i
breakpoint on ’i’ not set
mdb>n
io.print(i);
mdb>break i
mdb>c
[1]
i := calc.*(i,2);
mdb>

The breakpoints remain in effect over multiple function calls. They can be removed with
the delete statement. A list of all remaining breakpoints is obtained with breakpoints.

The interpreter can be instructed to call the debugger as soon as an exception is raised.
Simply add the instruction mdb.setCatch(true).

8.3 Profile Switches

Switches control the level of detail output shown while debugging or tracing program ex-
ecution. They are toggled with the set and unset command. The following switches are
currently supported:

timer activates a listing of all instructions being executed. It is measured in wall-clock
time.

flow shows the total byte size of all BAT target results and input arguments. It is a
good indicator on the amount of data being processed.

memory keeps track on growing memory needs.

io keeps track on the amount of physical IO and is used to detect operators con-
suming excessive amounts of space.

bigfoot keeps track of the current and maximum virtual memory footprint of the
BATs.[incomplete]

The snippet below shows setting the memory and timer switch. The switches take
effect at the next instruction.

mdb>set timer
mdb>set flow
mdb>c
[3]
26 usec# 0 0# io.print(i=3)
6 usec# 0 0# i := calc.*(i=6, _3=2)
10 usec# 0 0# b := bat.new(_5=0, _6=0)

Chapter 8: The MAL Debugger 144

7 usec# 0 8# bat.insert(b=<tmp_167>bat[:int,:int]{1}, _8=1, i=6)
#-----------------#
h t # name
int int # type
#-----------------#
[1, 6]
41 usec# 0 8# io.print(b=<tmp_167>bat[:int,:int]{1})
7 usec# 0 0# return test := "ok";
211 usec# 0 0# user.test(_2=3)

8.4 Program Inspection

The debugger commands available for inspection of the program and symbol tables are:

list (List) [<mod>.<fcn>[’[’<nr>’]’]]
A listing of the current MAL block, or one designated by the <mod>.<fcn> is
produced. The [<nr>] extension provides access to an element in the MAL
block history. The alternative name ’List’ also produces the type information.

optimizer [<mod>.<fcn>[’[’<nr>’]’]]
Gives an overview of the optimizer actions in the history of the MAL block.
Intermediate results can be accessed using the list command.

atoms Lists the atoms currently known

modules [<mod>]
Lists the modules currently known. An optional <mod> argument produces a
list of all signatures within the module identified.

dot [<mod>.<fcn>[’[’<nr>’]’]] [<file>]
A dataflow diagram can be produced using the dot command. It expects a
function identifier with an optional history index and produces a file for the
Linux program dot, which can produce a nice, multi-page graph to illustrate
plan complexity.

mdb>dot user.test

This example produces the user-tst.dot in the current working directory. The program
call

dot -Tps user-tst-0.dot -o user-tst-0.ps

creates a postscript file with the graphs. With the Adobe reader professional you
can break it up into multiple pages. An alternative is the program available from
http://www.tug.org/tex-archive/support/poster/poster.c The result is shown
in the figure below:

Since the flow graphs become rather complex, an optional variable list limits its
size.[TODO]

8.5 Runtime Inspection and Reflection

Part of the debugger functionality can also be used directly with MAL instructions.
The execution trace of a snippet of code can be visualized encapsulation with

Chapter 8: The MAL Debugger 145

mdb.setTrace(true) and mdb.setTrace(false). Likewise, the performance can be
monitored with the command mdb.setTimer(on/off). Using a boolean argument makes
it easy to control the (performance) trace at run time. The following snippet shows the
effect of patching the test case.

>function test(i:int):str;
> mdb.setTrace(true);
> io.print(i);
> i:= i*2;
> b:= bat.new(:int,:int);
> bat.insert(b,1,i);
> io.print(b);
> mdb.setTrace(false);
> return test:= "ok";
>end test;
>user.test(1);
mdb.setTrace(_3=true)
[1]
io.print(i=1)
i := calc.*(i=2, _5=2)
b := bat.new(_7=0, _8=0)
bat.insert(b=<tmp_1226>, _10=1, i=2)
#-----------------#
h t # name
int int # type
#-----------------#
[1, 2]
io.print(b=<tmp_1226>)
261 usec! user.test(_2=1)
>

The command mdb.setTimer() toggles the performance traceing flag. The argument
is a boolen to designate its state. The primary output of the timer switch is statistics in
micro-seconds, the memory tracer shows the arena increment, and the IO tracer shows in-
and out-blocks. The time spent on preparing the trace information is excluded from the
report. For more detailed timing information the Linux tool valgrind may be of help.

The routines mdb.setFlow(), mdb.setMemory(), and mdb.setIO() (de-)activate the
other switches.

>function test(i:int):str;
> mdb.setTimer(true);
> io.print(i);
> i:= i*2;
> b:= bat.new(:int,:int);
> bat.insert(b,1,i);
> io.print(b);
> mdb.setTimer(false);
> return test:= "ok";
>end test;

Chapter 8: The MAL Debugger 146

>user.test(1);
6 usec# mdb.setTimer(_3=true)
[1]
43 usec# io.print(i=1)
5 usec# i := calc.*(i=2, _5=2)
24 usec# b := bat.new(_7=0, _8=0)
10 usec# bat.insert(b=<tmp_1226>, _10=1, i=2)
#-----------------#
h t # name
int int # type
#-----------------#
[1, 2]
172 usec# io.print(b=<tmp_1226>)
261 usec# user.test(_2=1)

It is also possible to activate the debugger from within a program using mdb.start().
It remains in this mode until you either issue a quit command, or the command mdb.stop()
instruction is encountered. The debugger is only activated when the user can direct its
execution from the client interface. Otherwise, there is no proper input channel and the
debugger will run in trace mode.

The program listing functionality of the debugger is also captured in the MAL
debugger module. The current code block can be listed using mdb.list() and
mdb.List(). An arbitrary code block can be shown with mdb.list(module,function) and
mdb.List(module,function). A BAT representation of the current function is return by
mdb.getDefinition().

The symbol table and stack content, if available, can be shown with the operations
mdb.var() and mdb.list(module,function) Access to the stack frames may be helpful in
the context of exception handling. The operation mdb.getStackDepth() gives the depth
and individual elements can be accessed as BATs using mdb.getStackFrame(n). The
top stack frame is accessed using mdb.getStackFrame().

8.6 Debugger Attachment

Debugging a running MAL process is simplified with a few hooks in the kernel. It is
illustrated with a short example.

First open a client connection with the user using MAL as preferred language. Then the
state of the system can be inspected, in particular, the clients active can be looked up.

> b:= clients.getLogins();
> c:= clients.getUsers();
> io.print(b,c);

Locate the process you are interested in and obtain its identifier, say N (the first column
in the list above). The next step is to gracefully put the running process into debugging
mode without jeopardizing the application running.

> clients.suspend(N);

As soon as the next MAL instruction of process N starts the target process is put to
sleep and the debugger gains control. You can now inspect the execution context. The
control ends when you leave the debugger with a ’quit’ command.

Chapter 9: The MAL Profiler 147

9 The MAL Profiler

A key issue in the road towards a high performance implementation is to understand where
resources are being spent. This information can be obtained using different tools and at
different levels of abstraction. A coarse grain insight for a particular application can be ob-
tained using injection of the necessary performance capturing statements in the instruction
sequence. Fine-grain, platform specific information can be obtained using existing profilers,
like valgrind (http://www.valgrind.org), or hardware performance counters.

The MAL profiler collects detailed performance information, such as cpu, memory and
statement information. It is optionally extended with IO activity, which is needed for coarse
grain profiling only, and estimated bytes read/written by an instruction.

The execution profiler is supported by hooks in the MAL interpreter. The default strat-
egy is to ship an event record immediately over a stream to a separate performance monitor,
formatted as a tuple. An alternative strategy is preparation for off-line performance anal-
ysis.

Reflective performance analysis is supported by an event cache, the event log becomes
available as a series of BATs.

9.1 Event Filtering

The profiler supports selective retrieval of such information by tagging the instructions of
interest. This means that a profiler call has a global effect, all concurrent users are affected
by the performance overhead. Therefore, it is of primary interest to single user sessions.

The example below illustrates how the different performance counter groups are acti-
vated, instructions are filtered for tracking, and where the profile information is retained
for a posteriori analysis.

#profiler.activate("event");
#profiler.activate("pc");
#profiler.activate("operation");
profiler.activate("time");
profiler.activate("ticks");
#profiler.activate("cpu");
#profiler.activate("memory");
#profiler.activate("io");
#profiler.activate("bytes");
#profiler.activate("diskspace");
profiler.activate("statement");
profiler.setFilter("*","insert");
profiler.setFilter("*","print");

profiler.openStream("/tmp/MonetDBevents");
profiler.start();
b:= bbp.new(:int,:int);
bat.insert(b,1,15);
bat.insert(b,2,4);
bat.insert(b,3,9);

Chapter 9: The MAL Profiler 148

io.print(b);
profiler.stop();
profiler.closeStream();

We are interested in all functions name insert and print. A wildcard can be used to
signify any name, e.g. no constraints are put on the module in which the operations are
defined. Several profiler components are ignored, shown by commenting out the code line.

Execution of the sample leads to the creation of a file with the following content. The
ticks are measured in micro-seconds.

time, ticks, stmt # name
["15:17:56", 12, "_27 := bat.insert(<tmp_15>{3},1,15);"]
["15:17:56", 2, "_30 := bat.insert(<tmp_15>{3},2,4);"]
["15:17:56", 2, "_33 := bat.insert(<tmp_15>{3},3,9);"]
["15:17:56", 245, "_36 := io.print(<tmp_15>{3});",]

9.2 Event Caching

Aside from shipping events to a separate process, the profiler can keep the events in a local
BAT group. It is the default when no target file has been opened to collect the information.

Ofcourse, every measurement scheme does not come for free and may even obscure
performance measurements obtained through e.g. valgrind. The separate event caches can
be accessed using the operator profiler.getTrace(name). The current implementation
only supports access to time,ticks,pc,statement. The event cache can be cleared with
profiler.clearTrace().

Consider the following MAL program snippet:

profiler.setAll();
profiler.start();
b:= bbp.new(:int,:int);
bat.insert(b,1,15);
io.print(b);
profiler.stop();
s:= profiler.getTrace("statement");
t:= profiler.getTrace("ticks");
io.print(s,t);

The performance result of the program execution becomes:

#---#
h t t # name
int str int # type
#---#
[1, "b := bbp.new(0,0);", 51]
[2, "$6 := bat.insert(<tmp_22>,1,15);", 16]
[3, "$9 := io.print(<tmp_22>);", 189]

Chapter 9: The MAL Profiler 149

9.3 Monitoring Variables

The easiest scheme to obtain performance data is to retrieve the performance properties of
an instruction directly after it has been executed using getEvent(). It reads the profiling
stack maintained, provided you have started monitoring.

profiler setFilter(b);
profiler.start();
....
b:= algebra.select(a,0 1000); # some expensive operation
(clk, memread, memwrite):= profiler.getEvent();
...
profiler.stop();

9.3.1 The Stethoscope

The performance profiler infrastructure provides precisely control through a MAL program.
Often, however, inclusion of profiling statements is an afterthought.

The program stethoscope addresses this situation by providing a simple application
that can attach itself to a running server and extracts the profiler events from concurrent
running queries.

The arguments to stethoscope are the profiler properties to be traced and the applicable
filter expressions. For example,

stethoscope -t bat.insert algebra.join

tracks the microsecond ticks of two specific MAL instructions. A synopsis of the calling
conventions:

stethoscope [options] +[aefoTtcmibds] @verb{ { }<mod>.<fcn> @verb{ } }
-d | --dbname=<database_name>
-u | --user=<user>
-P | --password=<password>
-p | --port=<portnr>
-g | --gnuplot=<boolean>
-h | --host=<hostname>

Event selector:
a =aggregates

e =event
f =function
o =operation called
T =time
t =ticks
c =cpu statistics
m =memory resources
i =io resources
b =bytes read/written
d =diskspace needed
s =statement

Chapter 9: The MAL Profiler 150

Ideally, the stream of events should be piped into a 2D graphical tool, like xosview
(Linux). A short term solution is to generate a gnuplot script to display the numerics
organized as time lines. With a backup of the event lists give you all the information
needed for a descent post-mortem analysis.

Chapter 10: The MAL Modules 151

10 The MAL Modules

10.1 Module Loading

The server is bootstrapped by processing a MAL script with module definitions or
extensions. For each module file encountered, the object library lib <modulename>.so
is searched for in . . . /lib(64)/MonetDB. The corresponding signature are defined in
. . . /lib(64)/<modulename>.mal.

The default bootstrap script is called . . . /lib(64)/MonetDB/mal init.mal and it is des-
ignated in the configuration file as the mal init property. The rationale for this set-up is
that database administrators can extend/overload the bootstrap procedure without affect-
ing the distributed software package. It merely requires a different direction for the mal init
property.

The scheme also isolates the functionality embedded in modules from inadvertise use
on non-compliant databases. [access control issue, how to limit what a user can do on a
database?]

Unlike previous versions of MonetDB, modules can not be unloaded. Dynamic libraries
are always global and, therefore, it is best to load them as part of the server initialization
phase.

The MAL program should be compiled with -rdynamic and -ldl. This enables loading
the routines and finding out the address of a particular routine

The mapping from MAL module.function() identifier to an address is resolved in the
function getAddress. Since all modules libraries are loaded completely with GLOBAL
visibility, it suffices to provide the internal function name. In case an attempt to link to an
address fails, a final attempt is made to locate the *.o file in the current directory.

10.2 Module file loading

The default location to search for the module is in monet mod path unless an absolute
path is given.

Module loading relies on the operating system’s abilities to load shared libraries dynam-
ically at runtime.

To speedup restart and to simplify debugging, the MonetDB server can be statically
linked with some (or all) of the modules libraries. A complicating factor is then to avoid
users to initiate another load of the module file, because it would lead to a dlopen() error.

The partial way out of this dilema is to administer somewhere the statically bound
modules, or to enforce that each module comes with a known routine for which we can
search. In the current version we use the former approach.

This section contains a synopsis of the modules being shipped and which use knowledge
of the MAL runtime context. They are sorted by module name and repetitive reading may
be required to understand all details.

batExtensions
Extensions to the kernel/bat module.

Chapter 10: The MAL Modules 152

BBP BAT buffer pool interface.

Box Box variable interface.

Chopper Break a collection into chunks.

Clients Client record inspection.

Constants Global system defined values.

Factory Factory management interface.

Inspect Inspect the runtime symbol table(s).

I/O The input/output interface.

Language MAL language extension features.

MDB MAL debugger interface.

Manual Online manual material.

Mserver MonetDB server interface.

MAT Multiple association tables.

PBM Dealing with partitioned BATS.

Profiler Performance profiler.

PCRE Regular expression handling over strings.

Statistics A server-side statistics catalog.

Table Table output interface.

Transactions
Transaction interface

10.3 BAT Extensions

The kernel libraries are unaware of the MAL runtime semantics. This calls for declar-
ing some operations in the MAL module section and register them in the kernel modules
explicitly.

A good example of this borderline case are BAT creation operations, which require a
mapping of the type identifier to the underlying implementation type.

Another example concerns the (un)pack operations, which direct access the runtime
stack to (push)pull the values needed.

pattern bat.new(ht:any_1, tt:any_2, b:bat[:any_3,:any_4])
:bat[:any_1,:any_2]

address CMDBATclone comment "Creates a new empty transient BAT by
cloning another";

pattern bat.new(ht:any_1, tt:any_2) :bat[:any_1,:any_2]
address CMDBATnew comment "Creates a new empty transient BAT, with
head- and tail-types as indicated.";

Chapter 10: The MAL Modules 153

pattern bat.new(ht:any_1, tt:any_2, size:int) :bat[:any_1,:any_2]
address CMDBATnewint comment "Creates a new BAT with sufficient space.";

pattern bat.new(ht:any_1, tt:any_2, size:lng) :bat[:any_1,:any_2]
address CMDBATnew comment "Creates a new BAT and allocate space.";

pattern bat.new(ht:oid, tt:any_2, size:int) :bat[:oid,:any_2]
address CMDBATnewint;

pattern bat.new(ht:oid, tt:any_2, size:lng) :bat[:oid,:any_2]
address CMDBATnew;

pattern bat.new(b:bat[:any_1,:any_2]) :bat[:any_1,:any_2]
address CMDBATnewDerived;

pattern bat.new(b:bat[:any_1,:any_2], size:lng) :bat[:any_1,:any_2]
address CMDBATnewDerived;

command bat.new(nme:str):bat[:any_1,:any_2]
address CMDBATderivedByName comment "Localize a bat by name and pro-
duce a variant";

command bat.reduce(b:bat[:any_1,:any_2]):bat[:any_1,:any_2]
address CMDBATreduce comment "Designate a BAT for which auxillary struc-
tures can be dropped";

command bat.flush(b:bat[:any_1,:any_2]):void
address CMDBATflush comment "Designate a BAT as not needed anymore";

pattern bat.setGarbage(b:bat[:any_1,:any_2]):void
address CMDBATsetGarbage comment "Designate a BAT as garbage";

pattern bat.unpack(b:bat[:any_1,:any_2])(h:any_1,t:any_2)
address CMDbatunpack comment "Extract the first tuple from a bat";

pattern bat.pack(h:any_1,t:any_2):bat[:any_1,:any_2]
address CMDbatpack comment "Pack a pair into a BAT";

pattern bat.setBase(b:bat[:any_1,:any_2],c:bat[:any_1,:any_2]...):void
address CMDsetBase comment "Give the non-empty BATs consecutive oid
bases";

10.4 BAT Buffer Pool

The BBP module implements a box interface over the BAT buffer pool. It is primarilly
meant to ease inspection of the BAT collection managed by the server.

The two predominant approaches to use bbp is to access the BBP with either bind or
take. The former merely maps the BAT name to the object in the bat buffer pool. A more
controlled scheme is to deposit, take, release and discard elements. Any BAT B created can
be brought under this scheme with the name N. The association N->B is only maintained
in the box administration and not reflected in the BAT descriptor. In particular, taking a
BATobject out of the box leads to a private copy to isolate the user from concurrent updates
on the underlying store. Upon releasing it, the updates are merged with the master copy
[todo].

Chapter 10: The MAL Modules 154

The remainder of this module contains operations that rely on the MAL runtime setting,
but logically belong to the kernel/bat module.

module bbp;

command open():void
address CMDbbpopen comment "Locate the bbp box and open it.";

command close():void
address CMDbbpclose comment "Close the bbp box.";

command destroy():void
address CMDbbpdestroy comment "Destroy the box";

pattern take(name:str) :bat[:any_1,:any_2]
address CMDbbptake comment "Load a particular bat";

pattern deposit(name:str,v:bat[:any_1,:any_2]) :void
address CMDbbpdeposit comment "Enter a new bat into the bbp box.";

pattern deposit(name:str,loc:str) :bat[:any_1,:any_2]
address CMDbbpbindDefinition comment "Relate a logical name to a physical
BAT in the buffer pool.";

pattern commit():void
address CMDbbpReleaseAll comment "Commit updates for this client";

pattern releaseAll():void
address CMDbbpReleaseAll comment "Commit updates for this client";

pattern release(name:str,val:bat[:any_1,:any_2]) :void
address CMDbbprelease comment "Commit updates and release this BAT.";

pattern release(b:bat[:any_1,:any_2]):void
address CMDbbpreleaseBAT comment "Remove the BAT from further consid-
eration";

pattern destroy(b:bat[:any_1,:any_2]):void
address CMDbbpdestroyBAT1 comment "BAT removal at session end";

pattern destroy(b:bat[:any_1,:any_2],immediate:bit)
address CMDbbpdestroyBAT comment "Schedule a BAT for removal at session
end or immediately";

pattern toString(name:str):str
address CMDbbptoStr comment "Get the string representation of an element
in the box";

pattern discard(name:str):void
address CMDbbpdiscard comment "Remove the BAT from the box";

pattern iterator(nme:str):lng
address CMDbbpiterator comment "Locates the next element in the box";

pattern prelude():void
address CMDbbpprelude comment "Initialize the bbp box";

Chapter 10: The MAL Modules 155

pattern bind(name:str):bat[:any_1,:any_2]
address CMDbbpbind comment "Locate the BAT using its logical name";

command find(name:str):bat[:any_1,:any_2]
address CMDbbpfind3 comment "Locate the BAT using its logical name in the
BAT buffer pool");

command find(head:str,tail:str):bat[:any_1,:any_2]
address CMDbbpfind2 comment "Locate the BAT using the head and tail
names in the BAT buffer pool");

command find(idx:BAT):bat[:any_1,:any_2]
address CMDbbpbindindex comment "Locate the BAT using its BBP index in
the BAT buffer pool";

pattern getObjects():bat[:int,:str]
address CMDbbpGetObjects comment "View of the box content.";

command getHeadType() :bat[:int,:str]
address CMDbbpHeadType comment "Map a BAT into its head type";

command getTailType() :bat[:int,:str]
address CMDbbpTailType comment "Map a BAT into its tail type";

command getNames() :bat[:int,:str]
address CMDbbpNames comment "Map BAT into its bbp name";

command getRNames() :bat[:int,:str]
address CMDbbpRNames comment "Map a BAT into its bbp physical name";

command getName(b:bat[:any_1,:any_2]):str
address CMDbbpName comment "Map a BAT into its internal name";

command getCount() :bat[:int,:lng]
address CMDbbpCount comment "Create a BAT with the cardinalities of all
known BATs";

command getRefCount() :bat[:int,:int]
address CMDbbpRefCount comment "Create a BAT with the (hard) reference
counts";

command getLRefCount() :bat[:int,:int]
address CMDbbpLRefCount comment "Create a BAT with the logical reference
counts";

command getLocation() :bat[:int,:str]
address CMDbbpLocation comment "Create a BAT with their disk locations";

command getHeat() :bat[:int,:int]
address CMDbbpHeat comment "Create a BAT with the heat values";

command getDirty() :bat[:int,:str]
address CMDbbpDirty comment "Create a BAT with the dirty/ diffs/clean
status";

command getStatus() :bat[:int,:str]
address CMDbbpStatus comment "Create a BAT with the disk/load status";

Chapter 10: The MAL Modules 156

command getKind():bat[:int,:str]
address CMDbbpKind comment "Create a BAT with the persistency status";

command getRefCount(b:bat[:any_1,:any_2]) :int
address CMDgetBATrefcnt comment "Utility for debugging MAL interpreter";

command getLRefCount(b:bat[:any_1,:any_2]) :int
address CMDgetBATlrefcnt comment "Utility for debugging MAL interpreter";

command getDiskSpace() :int
address CMDbbpDiskSpace comment "Estimate the amount of diskspace oc-
cupied by dbfarm";

10.5 Constants

The const module provides a box abstraction store for global constants. Between sessions,
the value of the constants is saved on disk in the form of a simple MAL program, which is
scanned and made available by opening the box. A future implementation should provide
transaction support over the box, which would permit multiple clients to exchange (scalar)
information easily.

The default constant box is initialized with session variables, such as ’user’,’dbname’,
’dbfarm’, and ’dbdir’. These actions are encapsulated in the prelude routine called.

A box should be opened before being used. It is typically used to set-up the list of
current users and to perform authorization. The constant box is protected with a simple
authorization scheme, prohibiting all updates unless issued by the system administrator.

module const;

pattern open():void
address CSTopen comment "Locate and open the constant box";

pattern close():void
address CSTclose comment "Close the constant box ";

pattern destroy():void
address CSTdestroy comment "Destroy the box";

pattern take(name:str):any_1
address CSTtake comment "Take a variable out of the box";

pattern deposit(name:str,val:any_1) :void
address CSTdeposit comment "Enter a new variable into the box";

pattern releaseAll():void
address CSTreleaseAll comment "Release all variables in the box";

pattern release(name:str) :void
address CSTrelease comment "Release a new constant value";

pattern release(name:any_1):void
address CSTrelease comment "Release a new constant value";

pattern toString(name:any_1):str
address CSTtoString comment "Get the string representation of an element in
the box";

Chapter 10: The MAL Modules 157

pattern discard(name:any_1) :void
address CSTdiscard comment "Release the const from the box";

pattern newIterator()(:lng,:str)
address CSTnewIterator comment "Locate next element in the box";

pattern hasMoreElements()(:lng,:str)
address CSThasMoreElements comment "Locate next element in the box";

10.6 BAT Iterators

Many low level algorithms rely on an iterator to break a collection into smaller pieces. Each
piece is subsequently processed by a block.

For very large BATs it may make sense to break it into chunks and process them sepa-
rately to solve a query. An iterator pair is provided to chop a BAT into fixed size elements.
Each chunk is made available as a BATview. It provides read-only access to an underlying
BAT. Adjusting the bounds is cheap, once the BATview descriptor has been constructed.

The smallest granularity is a single BUN, which can be used to realize an iterator over
the individual BAT elements. For larger sized chunks, the operators return a BATview.

All iterators require storage space to administer the location of the next element. The
BAT iterator module uses a simple lng variable, which also acts as a cursor for barrier
statements.

The larger chunks produced are currently static, i.e. their size is a parameter of the call.
Dynamic chunk sizes are interesting for time-series query processing. (See another module)

command bat.newIterator(b:bat[:any_1,:any_2], size:lng)
(:lng,:bat[:any 1,:any 2]) address CHPnewChunkIterator comment "Create an
iterator with fixed granule size. The result is a view.";

command bat.hasMoreElements(b:bat[:any_1,:any_2], size:lng)
(:lng, :bat[:any 1,:any 2]) address CHPhasMoreChunks comment "Produce the
next chunk for processing.";

pattern bat.newIterator(b:bat[:any_1,:any_2]) (:lng, h:any_1, t:any_2)
address CHPbunIterator comment "Process the buns one by one extracted from
a void table.";

pattern bat.newIterator(b:bat[:any_1,:bat]) (:lng, h:any_1, t:any_2)
address CHPbunIterator comment "Process the buns one by one extracted from
a void table.";

pattern bat.hasMoreElements(b:bat[:any_1,:any_2]) (:lng, h:any_1, t:any_2)
address CHPbunHasMoreElements;

pattern bat.hasMoreElements(b:bat[:oid,:any_2]) (:lng, h:oid, t:any_2)
address CHPbunHasMoreElements comment "Produce the next bun for pro-
cessing.";

pattern bat.hasMoreElements(b:bat[:any_1,:bat]) (:lng, h:any_1, t:any_2)
address CHPbunHasMoreElements comment "Produce the next bun for pro-
cessing.";

Chapter 10: The MAL Modules 158

The head and tail values can also be extracted using the cursor. It points to the first
bun in the chunk under consideration. It is often more effective due to use the iterator with
automatic extraction of head and tail value; the overhead involved is much less.

pattern bat.getHead(b:bat[:any_1,:any],i:lng):any_1
address CHPgetHead comment "return the BUN head value using the cursor.";

pattern bat.getTail(b:bat[:any_2,:any_1],i:lng):any_1
address CHPgetTail comment "return the BUN tail value using the cursor.";

10.7 Box definitions

This module shows the behavior of a simple box of objects. Objects are stored into the box
using deposit and taken out with take. Once you are done, elements can be removed by
name or reference using discard.

A box should be opened before being used. It is typically used to set-up the list of
current users and to perform authorization.

module box;

pattern open(nme:str):any_1
address BOXopen comment "Locate the box and open it.";

pattern close(bname:str):void
address BOXclose comment "Close the box.";

pattern destroy(bname:str):void
address BOXdestroy comment "Destroy the box.";

pattern take(bnme:str, vnme:str):any_1
address BOXtake comment "Locates the typed value in the box.";

pattern deposit(bname:str,name:str,v:any_1):void
address BOXdeposit comment "Enter a new value into the box.";

pattern releaseAll(bname:str) :void
address BOXreleaseAll comment "Release all objects for this client.";

pattern release(bname:str,nme:str,val:any_1):void
address BOXrelease comment "Release the BAT from the client pool.";

pattern toString(bname:str,name:str) :str
address BOXtoString comment "Get the string representation of the i-th ele-
ment in the box.";

pattern discard(bname:str,name:str) :void
address BOXdiscard comment "Release the BAT from the client pool.";

pattern iterator(nme:str):lng
address BOXiterator comment "Locates the next element in the box.";

command getBoxNames():bat[:int,:str]
address BOXgetBoxNames comment "Retrieve the names of all boxes.";

Chapter 10: The MAL Modules 159

10.8 Client Management

Each online client is represented with an entry in the clients table. The client may inspect
his record at run-time and partially change its properties. The administrator sees all client
records and has the right to adjust global properties.

module clients;
#Operations for all clients

command setListing(flag:int):int
address CLTsetListing comment "Turn on/off echo of MAL instructions: 2 -
show mal instruction, 4 - show details of type resolutoin, 8 - show binding
information.";

command setHistory(s:str)
address CLTsetHistory comment "Designate console history file for readline.";

command getId():int
address CLTgetClientId comment "Return a number that uniquely represents
the current client.";

command getInfo():bat[:str,:str]
address CLTInfo comment "Pseudo bat with client attributes.";

command getScenario():str
address CLTgetScenario comment "Retrieve current scenario name.";

command setScenario(msg:str):str
address CLTsetScenario comment "Switch to other scenario handler, return
previous one.";

command quit():void
address CLTquit comment "Terminate the server. This command can only be
initiated from the console.";

command exit():void
address CLTexit comment "Terminate the session for a single client using a soft
error.";
#Administrator operations

command getLogins():bat[:int,:str]
address CLTLogin comment "Pseudo bat of client login time.";

command getLastCommand():bat[:int,:str]
address CLTLastCommand comment "Pseudo bat of client’s last command
time.";

command getActions():bat[:int,:int]
address CLTActions comment "Pseudo bat of client’s command counts.";

command getTime():bat[:int,:lng]
address CLTTime comment "Pseudo bat of client’s total time usage(in usec).";

command getUsers():bat[:int,:str]
address CLTusers comment "Pseudo bat of users logged in.";

Chapter 10: The MAL Modules 160

command suspend(id:int):void
address CLTsuspend comment "Put a client process to sleep for some time. It
will simple sleep for a second at a time, until the awake bit has been set in its
descriptor";

command wakeup(id:int):void
address CLTwakeup comment "Wakeup a client process";

command shutdown(forced:bit):void
address CLTshutdown comment "Close all client connections. If forced=false
the clients are moved into FINISHING mode, which means that the process
stops at the next cycle of the scenario. If forced=true all client processes are
immediately killed";

10.9 Factory management

The factory infrastructure can be inspected and steered with the commands provided here.

module factory;

command getPlants()(mod:bat[:oid,:str], fcn:bat[:oid,:str])
address FCTgetPlants comment "Retrieve the names for all active factories";

command getCaller():int
address FCTgetCaller comment "Retrieve the unique identity of the factory
caller";

command getOwners():bat[:oid,:str]
address FCTgetOwners comment "Retrieve the factory owners table";

command getArrival():bat[:oid,:timestamp]
address FCTgetArrival comment "Retrieve the time stamp the last call was
made";

command getDeparture():bat[:oid,:timestamp]
address FCTgetDeparture comment "Retrieve the time stamp the last answer
was returned";

command shutdown(m:str, f:str):void
address FCTshutdown comment "Close a factory";

10.10 Inspection

This module introduces a series of commands that provide access to information stored
within the interpreter data structures. In all cases, the pseudo BAT operation is returned
that should be garbage collected after being used.

The main performance drain would be to use a pseudo BAT directly to successively
access it components. This can be avoided by first assigning the pseudo BAT to a variable.

Inspection is organized for two purposes, for interactive use and as a bases for reflective
code. The latter needs BATs to work with. The former merely dumps the result in a table
for the front-ends to consume.

module inspect;

Chapter 10: The MAL Modules 161

command getDefinition(mod:str,fcn:str) :bat[:str,:str]
address INSPECTgetDefinition comment "Returns a string representation of a
specific function.";

command getSignature(mod:str,fcn:str) :bat[:str,:str]
address INSPECTgetSignature comment "Returns the function signature(s).";

command getAddress(mod:str,fcn:str) :bat[:str,:str]
address INSPECTgetAddress comment "Returns the function signature(s).";

command getComment(mod:str,fcn:str) :bat[:str,:str]
address INSPECTgetComment comment "Returns the function help informa-
tion.";

command getSource(mod:str,fcn:str):str
address INSPECTgetSource comment "Return the original input for a func-
tion.";

command getKind():bat[:oid,:str]
address INSPECTgetkind comment "Obtain the instruction kind.";

command getModule():bat[:oid,:str]
address INSPECTgetAllModules comment "Obtain the function name.";

command getFunction():bat[:oid,:str]
address INSPECTgetAllFunctions comment "Obtain the function name.";

command getSignatures():bat[:oid,:str]
address INSPECTgetAllSignatures comment "Obtain the function signatures.";

command getAddresses():bat[:oid,:str]
address INSPECTgetAllAddresses comment "Obtain the function address.";

pattern getSize():lng
address INSPECTgetSize comment "Return the storage size for the current
function (in bytes).";

command getSize(mod:str):bat[:str,:lng]
address INSPECTgetModuleSize comment "Return the storage size for a mod-
ule (in bytes).";

command getSize(mod:str,fcn:str):lng
address INSPECTgetFunctionSize comment "Return the storage size for a func-
tion (in bytes).";

pattern getType(v:bat[:any_1,:any_2]) (ht:str, tt:str)
address INSPECTtypeName comment "Return the internal type of a variable
(expression).";

pattern getType(v:any_1) :str
address INSPECTtypeName comment "Return the type of a variable (expres-
sion).";

command getTypeName(v:int):str
address INSPECTtypename comment "Get the type name associated with a
type id.";

Chapter 10: The MAL Modules 162

pattern getTypeIndex(v:any_1):int
address INSPECTtypeIndex comment "Return the type index of a variable.";

command getAtomNames():bat[:int,:str]
address INSPECTatom names comment "Collect a BAT with the atom
names.";

command getAtomSuper():bat[:int,:str]
address INSPECTatom sup names comment "Collect a BAT with the atom
names.";

command getAtomSizes():bat[:int,:int]
address INSPECTatom sizes comment "Collect a BAT with the atom sizes.";

command getEnvironment():bat[:str,:str]
address INSPECTgetEnvironment comment "Collect the environment
variables.";

10.11 Input/Output module

The IO module provides simple ascii-io rendering options. It is modeled after the tuple
formats, but does not attempt to outline the results. Instead, it is geared at speed, which
also means that some functionality regarding the built-in types is duplicated from the atoms
definitions.

A functional limited form of formatted printf is also provided. It accepts at most one
variable. A more complete approach is the tablet module.

The commands to load and save a BAT from/to an ASCII dump are efficient, but work
only for binary tables.

module io;

command stdin():bstream
address io stdin comment "return the input stream to the database client";

command stderr():streams
address io stderr comment "return the error stream for the database console";

command stdout():streams
address io stdout comment "return the output stream for the database client";

pattern print(val:any_1,lst:any...):void
address IOprint val comment "Print a MAL value tuple .";

pattern print(b1:bat[:any_1,:any]...):void
address IOtable comment "BATs are printed with ’#’ for legend lines, and
the BUNs on seperate lines between brackets, containing each to comma sepa-
rated values (head and tail). If multiple BATs are passed for printing, print()
performs an implicit natural join, producing a multi attribute table.";

pattern ftable(filep:streams, b1:bat[:any_1,:any], b:bat[:any_1,:any]...
):void

address IOftable comment "Print an n-ary table to a file.";

Chapter 10: The MAL Modules 163

pattern print(order:int,b:bat[:any_1,:any], b2:bat[:any_1,:any]...):void
address IOotable comment "The same as normal table print, but enforces to
use the order of BAT number [1..argc] to do the printing.";

pattern table(b1:bat[:any_1,:any], b2:bat[:any_1,:any]...):void
address IOttable comment "Print an n-ary table. Like print, but does not print
oid column";

pattern table(order:int, b1:bat[:any_1,:any], b2:bat[:any_1,:any]...):void
address IOtotable comment "Print an n-ary table.";

pattern ftable(fp:streams, order:int, b1:bat[:any_1,:any],
b:bat[:any_1,:any]...):void

address IOfotable comment "Print an n-ary table to a file.";

pattern print(val:any_1):void
address IOprint val comment "Print a MAL value tuple .";

pattern print(val:bat[:any_1,:any_2]):void
address IOprint val comment "Print a MAL value tuple .";

pattern prompt(val:any_1):void
address IOprompt val comment "Print a MAL value without brackets.";

pattern printft(val:any_1):void
address IOprint ft comment "Select default format ";

command printf(format:str,val:bit):void
address IOprint formatted bit;

command printf(format:str,val:chr):void
address IOprint formatted chr;

command printf(format:str,val:int):void
address IOprint formatted int;

command printf(format:str,val:sht):void
address IOprint formatted sht;

command printf(format:str,val:oid):void
address IOprint oid;

command printf(format:str,val:lng):void
address IOprint formatted lng;

command printf(format:str,val:flt):void
address IOprint formatted flt;

command printf(format:str,val:dbl):void
address IOprint formatted dbl;

command printf(val:str):void
address IOprint str;

command printf(format:str,val:str):void
address IOprint formatted str;

Chapter 10: The MAL Modules 164

command export(b:bat[:any_1,:any_2], filepath:str):bit
address IOexport comment "Export a BAT as ASCII to a file. If the ’filepath’
is not absolute, it is put into the .../dbfarm/$DB directory. Success of failure
is indicated.";

command import(b:bat[:any_1,:any_2], filepath:str) :bat[:any_1,:any_2]
address IOimport comment "Import a BAT from an ASCII dump. The new tu-
ples are *inserted* into the parameter BAT. You have to create it! Its signature
must match the dump, else parsing errors will occur and FALSE is returned.";

10.12 Language Extensions

Iterators over scalar ranges are often needed, also at the MAL level. The barrier and control
primitives are sufficient to mimic them directly.

The modules located in the kernel directory should not rely on the MAL datastructures.
That’s why we have to deal with some bat operations here and delegate the signature to
the proper module upon loading.

Running a script is typically used to initialize a context. Therefore we need access to
the runtime context. For the call variants we have to determine an easy way to exchange
the parameter/return values.

module language;

command newRange(v:oid)(:bit,:oid)
address RNGnewRange oid;

command newRange(v:sht)(:bit,:sht)
address RNGnewRange sht;

command newRange(v:int)(:bit,:int)
address RNGnewRange int;

command newRange(v:lng)(:bit,:lng)
address RNGnewRange lng;

command newRange(v:flt)(:bit,:flt)
address RNGnewRange flt;

command newRange(v:dbl)(:bit,:dbl)
address RNGnewRange dbl comment "This routine introduces an iterator over
a scalar domain.";

command nextElement(step:oid,last:oid)(:bit,:oid)
address RNGnextElement oid;

command nextElement(step:sht,last:sht)(:bit,:sht)
address RNGnextElement sht;

command nextElement(step:int,last:int)(:bit,:int)
address RNGnextElement int;

command nextElement(step:lng,last:lng)(:bit,:lng)
address RNGnextElement lng;

Chapter 10: The MAL Modules 165

command nextElement(step:flt,last:flt)(:bit,:flt)
address RNGnextElement flt;

command nextElement(step:dbl,last:dbl)(:bit,:dbl)
address RNGnextElement dbl comment "Advances the iterator with a fixed
value until it becomes >= last.";

command raise(msg:str) :str
address CMDraise comment "Raise an exception labeled with a specific mes-
sage.";

command assert(v:bit,term:str):void
address MALassertBit;

command assert(v:sht,term:str):void
address MALassertSht;

command assert(v:int,term:str):void
address MALassertInt;

command assert(v:lng,term:str):void
address MALassertLng;

command assert(v:str,term:str):void
address MALassertStr;

command assert(v:oid,term:str):void
address MALassertOid;

pattern assert(v:any_1,pname:str,oper:str,val:any_2):void
address MALassertTriple comment "Assertion test";

pattern assertSpace(depth:int)
address MALsafeguardStack comment "Ensures that the current call does not
consume more then depth*vtop elements on the stack";

pattern dataflow():int
address MALstartDataflow comment "The current guarded block is executed
using dataflow control ";

command register(m:str,f:str,code:str,help:str):void
address CMDregisterFunction comment"Compile the code string and register
it as a MAL function";

pattern call(s:str):void
address CMDcallString comment "Evaluate a MAL string program";

pattern call(s:bat[:oid,:str]):void
address CMDcallBAT comment "Evaluate a program stored in a BAT";

command source(f:str):void
address CMDevalFile comment "Merge the instructions stored in the file with
the current program";

Chapter 10: The MAL Modules 166

10.13 MAL debugger interface

This module provides access to the functionality offered by the MonetDB debugger and
interpreter status. It is primarilly used in interactive sessions to activate the debugger
at a given point. Furthermore, the instructions provide the necessary handle to generate
information for post-mortum analysis.

To enable ease of debugging and performance monitoring, the MAL interpreter comes
with a hardwired gdb-like text-based debugger. A limited set of instructions can be included
in the programs themselves, but beware that debugging has a global effect. Any concurrent
user will be affected by breakpoints being set.

The prime scheme to inspect the MAL interpreter status is to use the MAL debugger
directly. However, in case of automatic exception handling it helps to be able to obtain
BAT versions of the critical information, such as stack frame table, stack trace, and the
instruction(s) where an exception occurred. The inspection typically occurs in the exception
handling part of the MAL block.

Beware, a large class of internal errors can not easily captured this way. For example,
bus-errors and segmentation faults lead to premature termination of the process. Similar,
creation of the post-mortum information may fail due to an inconsistent state or insufficient
resources.

module mdb;

pattern start():void
address MDBstart comment "Start interactive debugger";

pattern start(clientid:int):void
address MDBstart comment "Start interactive debugger on a client";

pattern start(mod:str,fcn:str):void
address MDBstartFactory comment "Start interactive debugger on a running
factory";

pattern stop():void
address MDBstop comment "Stop the interactive debugger";

pattern inspect(mod:str,fcn:str):void
address MDBinspect comment "Run the debugger on a specific function";

pattern setTrace(b:bit):void
address MDBsetTrace comment "Turn on/off tracing of current routine";

pattern setTrace(b:str):void
address MDBsetVarTrace comment "Turn on/off tracing of a variable ";

pattern setCatch(b:bit):void
address MDBsetCatch comment "Turn on/off catching exceptions";

command setTimer(b:bit):void
address MDBsetTimer comment "Turn on/off performance timer for debugger";

command setBigfoot(b:bit):void
address MDBsetBigfoot comment "Turn on/off memory foot print for debug-
ger";

Chapter 10: The MAL Modules 167

command setFlow(b:bit):void
address MDBsetFlow comment "Turn on/off memory flow debugger";

command setMemory(b:bit):void
address MDBsetMemory comment "Turn on/off memory statistics tracing.";

command setIO(b:bit):void
address MDBsetIO comment "Turn on/off io statistics tracing";

command getDebug():int
address MDBgetDebug comment "Get the kernel debugging bit-set. See the
MonetDB configuration file for details";

command setDebug(flg:str):int
address MDBsetDebugStr comment "Set the kernel debugging bit-set and re-
turn its previous value. The recognized options are: threads, memory, proper-
ties, io, transactions, modules, algorithms, estimates, xproperties";

command setDebug(flg:int):int
address MDBsetDebug comment "Set the kernel debugging bit-set and return
its previous value.";

command getException(s:str):str
address MDBgetExceptionVariable comment "Extract the variable name from
the exception message";

command getReason(s:str):str
address MDBgetExceptionReason comment "Extract the reason from the ex-
ception message";

command getContext(s:str):str
address MDBgetExceptionContext comment "Extract the context string from
the exception message";

pattern list():void
address MDBlist comment "Dump the current routine on standard out.";

pattern listMapi():void
address MDBlistMapi comment "Dump the current routine on standard out
with Mapi prefix.";

pattern list(M:str,F:str):void
address MDBlist3 comment "Dump the routine M.F on standard out.";

pattern List():void
address MDBlistDetail comment "Dump the current routine on standard out.";

pattern List(M:str,F:str):void
address MDBlist3Detail comment "Dump the routine M.F on standard out.";

pattern var():void
address MDBvar comment "Dump the symboltable of current routine on stan-
dard out.";

Chapter 10: The MAL Modules 168

pattern var(M:str,F:str):void
address MDBvar3 comment "Dump the symboltable of routine M.F on standard
out.";

command grab(id:int):void
address MDBgrabClient comment "Stop and debug another client process.";

pattern dot(M:str,F:str,s:str):void
address MDBshowFlowGraph comment "Dump the data flow of the function
M.F in a format recognizable by the command ’dot’ on the file s";

pattern getStackDepth():int
address MDBStkDepth comment "Return the depth of the calling stack.";

pattern getStackFrame(i:int):bat[:str,:str]
address MDBgetStackFrameN;

pattern getStackFrame():bat[:str,:str]
address MDBgetStackFrame comment "Collect variable binding of current (n-
th) stack frame.";

pattern getStackTrace():bat[:void,:str]
address MDBStkTrace;

pattern dump()
address MDBdump comment "Dump instruction, stacktrace, and stack";

pattern getDefinition():bat[:void,:str]
address MDBgetDefinition comment "Returns a string representation of the
current function with typing information attached";

10.14 Manual Inspection

This module introduces a series of commands that provide access to the help information
stored in the runtime environment.

The manual bulk operations ease offline inspection of all function definitions. It in-
cludes an XML organized file, because we expect external tools to massage it further for
presentation.

module manual;

command help(text:str)
address MANUALhelp comment "Produces a list of all <module>.<function>
that match the text pattern. The wildcard ’*’ can be used for <module> and
<function>. Using the ’(’ asks for signature information and using ’)’ asks for
the complete help record.";

command search(text:str)
address MANUALsearch comment "Search the manual for command descrip-
tions that match the regular expression ’text’";

command createXML(mod:str):void
address MANUALcreate1 comment "Generate a synopsis of a module";

Chapter 10: The MAL Modules 169

command createXML():void
address MANUALcreate0 comment "Produces a XML-formatted manual over
all modules loaded.";

command section(mod:str):void
address MANUALcreateSection1 comment "Generate a synopsis of a module
for the reference manual";

command index():void
address MANUALcreateIndex comment "Produces an overview of all names
grouped by module.";

command summary():void
address MANUALcreateSummary comment "Produces a manual with help lines
grouped by module.";

command completion(pat:str):bat[:int,:str]
address MANUALcompletion comment "Produces the wordcompletion table.";

10.15 MonetDB server interface

This module contains a simple interface for setting up internet connections and to initialize
a client session.

Clients may initialize a private listener to implement specific services. For example, in
an OLTP environment it may make sense to have a listener for each transaction type, which
simply parses a sequence of transaction parameters.

Authorization of access to the server is handled as part of the client record initialization
phase.

The complete Mapi library is also available to setup communication with another
Mserver. This library internally uses pointer handles, which we replace with an index in a
locally maintained table. It provides a handle to easily detect havoc clients.

module mserver;

command listen():int
address SERVERlisten default comment "Start a Mapi server with the default
settings.";

command listen(port:int):int
address SERVERlisten port comment "Start a Mapi server on the given port";

command listen(port:int, maxusers:int):int
address SERVERlisten2 comment "Start a Mapi server";

command listen(port:int, maxusers:int, cmd:str):int
address SERVERlisten3 comment "Start the Mapi listener on <port> for
<maxusers>. For a new client connection MAL procedure <cmd>(Stream s in,
Stream s out) is called.If no <cmd> is specified a new client thread is forked.";

command listen_ssl(port:int, maxusers:int,
keyfile:str,certfile:str, cmd:str):int address SERVERlistenSSL comment "Start
the Mapi listener on <port> for <maxusers> using SSL. <keyfile> and <certfile>

Chapter 10: The MAL Modules 170

give the path names for files with the server key and certificates in PEM format.
For a new client connection MAL procedure <cmd>(Stream s in, Stream s out)
is called. If no <cmd> is specified a new client thread is forked.";

command stop():void
address SERVERstop comment "Terminate connection listeners";

command suspend():void
address SERVERsuspend comment "Suspend accepting connections";

command resume():void
address SERVERresume comment "Resume connection listeners";

command malclient(in:streams, out:streams):void
address SERVERclient comment "Start a Mapi client.";

command trace(mid:int,flag:int):void
address SERVERtrace comment "Toggle the Mapi library tracer";

command reconnect(host:str, port:int, usr:str, passwd:str,lang:str):int
address SERVERreconnectWithoutAlias comment "Re-establish connection
with a remote mserver";

command reconnect(host:str, port:int, db_alias:str, usr:str,
passwd:str,lang:str):int

address SERVERreconnectAlias comment "Re-establish connection with a re-
mote mserver";

command reconnect(mid:int):void
address SERVERreconnect comment "Re-establish a connection";

command connect(host:str, port:int, usr:str, passwd:str,lang:str):int
address SERVERconnect comment "Establish connection with a remote
mserver";

command connect_ssl(host:str, port:int, usr:str, passwd:str,lang:str):int
address SERVERconnectssl comment "Establish connection with a remote
mserver using the secure socket layer";

command disconnect(dbalias:str):int
address SERVERdisconnectWithAlias comment "Close connection with a re-
mote mserver";

command disconnect():int
address SERVERdisconnectALL comment "Close connections with all remote
mserver";

command setAlias(dbalias:str)
address SERVERsetAlias comment "Give the channel a logical name";

command lookup(dbalias:str):int
address SERVERlookup comment "Retrieve the connection identifier";

command disconnect(mid:int):void
address SERVERdisconnect comment "Terminate the session";

Chapter 10: The MAL Modules 171

command destroy(mid:int):void
address SERVERdestroy comment "Destroy the handle";

command ping(mid:int):int
address SERVERping comment "Test availability of server";

command query(mid:int, qry:str):int
address SERVERquery comment "Sent the query for execution";

command query_handle(mid:int, qry:str):int
address SERVERquery handle comment "Sent the query for execution";

pattern query_array(mid:int, qry:str, arg:str...):int
address SERVERquery array comment "Sent the query for execution replacing
’?’ by arguments";

command prepare(mid:int, qry:str):int
address SERVERprepare comment "Prepare a query for execution";

command finish(hdl:int):int
address SERVERfinish comment "Remove all remaining answers";

command get_field_count(hdl:int):int
address SERVERget field count comment "Return number of fields";

command get_row_count(hdl:int):int
address SERVERget row count comment "Return number of rows";

command fetch_row(hdl:int):int
address SERVERrows affected comment "Return number of affected rows";

command fetch_row(hdl:int):int
address SERVERfetch row comment "Retrieve the next row for analysis";

command fetch_all_rows(hdl:int):int
address SERVERfetch all rows comment "Retrieve all rows into the cache";

command fetch_field(hdl:int,fnr:int):str
address SERVERfetch field str comment "Retrieve a single field";

command fetch_field(hdl:int,fnr:int):int
address SERVERfetch field int comment "Retrieve a single int field";

command fetch_field(hdl:int,fnr:int):lng
address SERVERfetch field lng comment "Retrieve a single lng field";

command fetch_field(hdl:int,fnr:int):sht
address SERVERfetch field sht comment "Retrieve a single sht field";

command fetch_field(hdl:int,fnr:int):void
address SERVERfetch field void comment "Retrieve a single void field";

command fetch_field(hdl:int,fnr:int):oid
address SERVERfetch field oid comment "Retrieve a single void field";

command fetch_field(hdl:int,fnr:int):chr
address SERVERfetch field chr comment "Retrieve a single chr field";

Chapter 10: The MAL Modules 172

command fetch_field_array(hdl:int):bat[:int,:str]
address SERVERfetch field bat comment "Retrieve all fields for a row";

command fetch_line(hdl:int):str
address SERVERfetch line comment "Retrieve a complete line";

command fetch_reset(hdl:int):int
address SERVERfetch reset comment "Reset the cache read line.";

command next_result(hdl:int):int
address SERVERnext result comment "Go to next result set";

command error(mid:int):int
address SERVERerror comment "Check for an error in the communication";

command getError(mid:int):str
address SERVERgetError comment "Get error message";

command explain(mid:int):str
address SERVERexplain comment "Turn the error seen into a string";

pattern put(mid:int, nme:str, val:any_1):void
address SERVERput comment "Send a value to a remote site";

pattern put(nme:str, val:any_1):str
address SERVERputLocal comment "Prepare sending a value to a remote site";

pattern rpc(key:int,qry:str...):any
address SERVERmapi rpc single row comment "Sent a simple query for exe-
cution and fetch result";

pattern rpc(key:int,qry:str):bat[:any_1,:any_2]
address SERVERmapi rpc bat;

command rpc(key:int,qry:str):void
address SERVERquery comment "Sent a simple query for execution";

pattern
bind(key:int,rschema:str,rtable:str,rcolumn:str,i:int):bat[:any_1,:any_2]

address SERVERbindBAT comment "Bind a remote variable to a local one";

pattern bind(key:int,rschema:str,rtable:str,i:int):bat[:any_1,:any_2]
address SERVERbindBAT comment "Bind a remote variable to a local one";

pattern bind(key:int,remoteName:str):bat[:any_1,:any_2]
address SERVERbindBAT comment "Bind a remote variable to a local one";
mserver.listen();

10.16 Multiple association tables

A MAT is a convenient way to deal with scaleability. It combines the definitions of several,
type compatible BATs under a single name. This view is only materialized when the
operations can not deal with the components individually, or the incremental operation is
not supported.

The module is supported by the mal mergetable optimizer.

Chapter 10: The MAL Modules 173

The primitives below are chosen to accomodate the SQL front-end to produce reasonable
efficient code.

module mat;

pattern new(b:bat[:any_1,:any_2]...):bat[:any_1,:any_2]
address MATnew comment "Define a Merge Association Table (MAT) ";

pattern pack(b:bat[:any_1,:any_2]...):bat[:any_1,:any_2]
address MATpack comment "Materialize the MAT into the first BAT";

pattern print(b:bat[:any_1,:any_2]...):void
address MATprint;

pattern newIterator(grp:bat[:any_1,:any_2]...):bat[:any_1,:any_2]
address MATnewIterator comment "Create an iterator over a MAT";

pattern hasMoreElements(grp:bat[:any_1,:any_2]...):bat[:any_1,:any_2]
address MAThasMoreElements comment "Find the next element in the merge
table";

command info(g:str, e:str):bat[:any_1,:any_2]
address MATinfo comment "retrieve the definition from the partition cata-
logue";

10.17 BAT Partition Manager

In real-life database applications the BATs tend to grow beyond the memory size. This leads
to a heavy IO dominated behavior, which can partly be avoided by breaking up the query
into a sequence of subqueries using a map-reduce strategy. The BAT partition manager
(BPM) module is designed to support this strategy using range- and hash-partitioning.

Consider we want to reorganize R:bat[:oid,:int] into two partitions, based on splitting by
tail value. The following MAL program illustrates the snippet of actions needed:

bpm.open(); Ralias:= bpm.deposit("myversion",R:bat[:oid,:int]);
bpm.rangePartition(Ralias,nil:int,100); bpm.rangePartition(Ralias,101,200);
bpm.close();

The command bpm.deposit registers a BAT as one for which a partitioned copy is
required. The first partition call breaks the orginal BAT into two pieces: (nil:int,100) and
(101,nil:int). The second call breaks the latter into (101,200) and (201,nil:int). The BAT
partitions share the persistency properties. Partitioning on the head simple calls for a
reverse operation on the source BAT first.

The partition manager also supports hash-based partitioning. Its argument is the num-
ber of hash bucket bits.

bpm.open(); Rev:= bat.reverse(R:bat[:oid,:int]); Ralias:= bpm.deposit("myHashVersion",Rev);
creates side effects bpm.hashPartition(Ralias,2); bpm.close();

This example creates a hash-partition based on the head.

The design is based on the assumption that partitions are reasonably large. This helps
to limit plan explosion. (or a scheduler should step in)

Chapter 10: The MAL Modules 174

10.17.1 Derived partitioning

A relational front-end would benefit from derived horizontal fragmentation. It would enable
grouping together related fragments on the same site. Assume a relation R(A,B) which is
already partitioned on A the derived fragmentation on the head is enforced with

bpm.derivePartition(B,A);

10.17.2 Using partitions

The partitioned BAT can be used in two ways. A query plan can be rewritten into a
generator over the partitions, or it can be used by optimizers to derived all subqueries first
for symbolic evaluation.

The former is illustrated with the snippet to select part of a partitioned BAT. In this
example we collect the partial results in the accumulator BAT U.

bpm.open(); Ralias:bat[:oid,:int]:= bpm.take("myversion"); U:=
bat.new(:oid,:int); barrier Rp:= bpm.newIterator(Ralias); ... t:=
algebra.select(Rp,0,100); U:= algebra.union(tu,t); ... redo Rp:=
bpm.hasMoreElements(Ralias); exit Rp; bpm.close();

The properties of the partitioned BATs are particularly useful during query optimization.
However, it only works if the BAT identifier can be determined at compile time. For SQL
it can be simply looked up in the catalog as part of a preparatory optimizer step.

To illustrate, the same problem handled by an optimizer that produces the plan based
on a known number of partitions:

bpm.open(); R:bat[:oid,:int]:= bpm.take("myversion"); # get the partition
alias optimizer.mergetable(); T:= algebra.select(R,0,100);

is translated to the plan:

bpm.open(); R:bat[:oid,:int]:= bpm.take("myversion"); # get the
partition alias R0:bat[:oid,:int]:= bpm.take(R,0, nil:oid,nil:oid, 0,100);
R1:bat[:oid,:int]:= bpm.take(R,1, nil:oid,nil:oid, 101,200); R2:bat[:oid,:int]:=
bpm.take(R,2, nil:oid,nil:oid, 201,nil:int); R:= mat.new(R0,R1,R2); T:=
algebra.select(R,0,100); optimizer.multitable();

In this translation Ri also gets the properties of the BATs. It is now up to the mat
optimizer to decide about further plan expansion or an iterator approach.

10.17.3 Partition updates

The content of the partitions is preferrable updated in bulk. This calls for accumulation
of insertions/deletions in pending update BATs, as already performed in the SQL code
generator. Once the transaction is commited, the updates are propagated (in parallel) to
all partitions.

bpm.open(); Ralias:bat[:oid,:int] := bpm.take("myversion"); bpm.insert(Ralias,
Rinsert); # handle pending inserts bpm.delete(Ralias, Rdelete); # handle
pending deletes bpm.replace(Ralias, Rold, Rnew); # handle pending updates
bpm.close();

Chapter 10: The MAL Modules 175

The replace operator works on the assumption that the head of Rold and Rnew is
unique.

It remains possible to retrieve a partition and directly insert elements, but then it is up
to the compiler to ensure that the boundery conditions are met.

10.17.4 Partitioned results

In many situations, you would like to keep the partial results as a partitioned BAT again.
The easiest solution is to create a partitioned BAT, whose partitions are empty. Subse-
quently, we insert the temporary results. Depending on the fragmentation criteria, pieces
may align with the pieces known, or lead to a redistribution of the buns to the correct bats.

In the previous plan for this becomes

bpm.open(); Tmp := bpm.deposit("tmp",:bat[:oid,:int]); bpm.rangePartition(tmp,nil:int,100);
bpm.rangePartition(tmp,101,nil:int);
Ralias:bat[:oid,:int]:= bpm.take("myversion"); # get the partition alias
R0:bat[:oid,:int]:= bpm.take("myversion", nil:oid,nil:oid, 0,100); T0:=
algebra.select(R0,0,100); bpm.insert(Tmp,T0);
R1:bat[:oid,:int]:= bpm.take("myversion", nil:oid,nil:oid, 101,200); T1:= alge-
bra.select(R1,0,100); bpm.insert(Tmp,T1);
R2:bat[:oid,:int]:= bpm.take("myversion", nil:oid,nil:oid, 201,nil:int); T2:= al-
gebra.select(R2,0,100); bpm.insert(Tmp,T2);

Note that a symbolic optimizer can reduce this plan to a small snippet.
The rationale for the update approach is that re-distribution of temporary results are

hidden behind the bpm.insert() interface. The only decision that should be taken by the
optimizer is the fragmentation criteria for the temporary results.

For temporary results the range bounds need not be stored in the BPM catalog. Instead,
the mat approach could be used to reduce the plan size.

bpm.open(); Ralias:= bpm.take("myversion",:bat[:oid,:int]); # get the
partition alias R0hlow=nil:oid,hhigh=nil:oid,tlow=nil:int,thigh=100:=
bpm.take(Ralias, 0); T0:=algebra.select(R0,0,100);
R1hlow=nil:oid,hhigh=nil:oid,tlow=101,thigh=200:= bpm.take(Ralias, 1);
T1:= algebra.select(R1,0,100);
R2hlow=nil:oid,hhigh=nil:oid,tlow=201,thigh=nil:int:= bpm.take(Ralias, 2);
R:= mat.new(T0,T1,T2); T2:=algebra.select(R2,0,100);

10.17.5 Partition iterators

The default strategy for an optimizer is to replace a reference to a partitioned BAT by an
iterator.

l:= bpm.new(); barrier Elm:bat[:oid,:int]:= bpm.newIterator(Ralias); t:=
algebra.select(Elm,0,20); bpm.addPartition(l,t); redo Elm:bat[:oid,:int]:=
bpm.newIterator(Ralias); exit Elm;

Variations on this theme are iterators that search for partitions overlapping a range or
those that are not empty.

Chapter 10: The MAL Modules 176

10.17.6 Partition selection

Partition aware relational operators further reduce the performance overhead and at the
same time avoid cluttering the MAL plans with too much flow of control constructs. A few
operators relevant for the SQL environment will be added.

The select operation can be overloaded in the BPM to improve processing further. For
example, the operation

t := bpm.select(Ralias,0,100);

extracts portions of all three partitions and creates a non-partitioned result BAT. If the
partition bounds align with the selection criteria this operation becomes cheap. It can be
used to convey information on the bounds to optimizers.

The lifetime of a partitioned table is inherited from its components. How to detect
that a temporary BAT is removed from the BBP? Currently we have to explicitly call the
bpm.garbage() on those partitioned BATs.

At the end of a query plan we have to garbage collect any of the left-over partitioned
temporary tables.

10.18 Performance profiler

A key issue in developing fast programs using the Monet database back-end requires a keen
eye on where performance is lost. Although performance tracking and measurements are
highly application dependent, a simple to use tool makes life a lot easier.

Activation of the performance monitor has a global effect, i.e. all concurrent actions on
the kernel are traced, but the events are only sent to the client initiated the profiler thread.

10.18.1 Monet Event Logger

The Monet Event Logger generates records of each event of interest indicated by a log filter,
i.e. a pattern over module and function names.

The log record contents is derived from counters being (de-)activated. A complete list
of recognized counters is shown below.

10.18.2 Execution tracing

Tracing is a special kind of profiling, where the information gathered is not sent to a remote
system, but stored in the database itself. Each profile event is given a separate BAT

thread and time since start
profiler.activate("tick");
cpu time in nano-seconds
profiler.activate("cpu");
memory allocation information
profiler.activate("memory");
IO activity
profiler.activate("io");
Module,function,program counter
profiler.activate("pc");
actual MAL instruction executed

Chapter 10: The MAL Modules 177

profiler.activate("statement");

The profiler event can be handled in several ways. The default strategy is to ship the
event record immediately over a stream to a performance monitor. An alternative strategy
is preparation of off-line performance analysis.

To reduce the interference of performance measurement with the experiments, the user
can use an event cache, which is emptied explicitly upon need.

module profiler;

command activate(name:str):void
address CMDactivateProfiler comment "Make the specified counter active.";

command deactivate(name:str):void
address CMDdeactivateProfiler comment "Deactivate the counter";

command openStream():void
address CMDopenProfilerStream comment "Sent the events to output stream";

command openStream(fnme:str):void
address CMDsetProfilerFile comment "Send the log events to a file ";

command openStream(host:str, port:int):void
address CMDsetProfilerStream comment "Send the log events to a stream ";

command closeStream():void
address CMDcloseProfilerStream comment "Stop sending the event records";

command setAll():void
address CMDsetAllProfiler comment "Short cut for setFilter(*,*).";

command setNone():void
address CMDsetNoneProfiler comment "Short cut for clrFilter(*,*).";

command setFilter(mod:str,fcn:str):void
address CMDsetFilterProfiler comment "Generate an event record for all func-
tion calls that satisfy the regular expression mod.fcn. A wildcard (*) can be
used as name to identify all";

pattern setFilter(v:any):void
address CMDsetFilterVariable comment "Generate an event record for every
instruction where v is used;"

command clrFilter(mod:str,fcn:str):void
address CMDclrFilterProfiler comment "Clear the performance trace bit of the
selected functions.";

pattern clrFilter(v:any):void
address CMDsetFilterVariable comment "Stop tracing the variable" ;

command setStartPoint(mod:str,fcn:str):void
address CMDstartPointProfiler comment "Start performance tracing at
mod.fcn";

command setEndPoint(mod:str,fcn:str)
address CMDendPointProfiler comment "End performance tracing after
mod.fcn";

Chapter 10: The MAL Modules 178

command start():void
address CMDstartProfiler comment "Start performance tracing";

command noop():void
address CMDnoopProfiler comment "Fetch any pending performance events";

command stop():void
address CMDstopProfiler comment "Stop performance tracing";

command reset():void
address CMDclearTrace comment "Clear the profiler traces";

command dumpTrace():void
address CMDdumpTrace comment "List the events collected";

command getTrace(e:str):bat[:int,:any_1]
address CMDgetTrace comment "Get the trace details of a specific event";

pattern getEvent()(:lng, :int,:int)
address CMDgetEvent comment "Retrieve the performance indicators of the
previous instruction";

command cleanup():void
address CMDcleanup comment "Remove the temporary tables for profiling";

10.19 PCRE library interface

The PCRE library is a set of functions that implement regular expression pattern matching
using the same syntax and semantics as Perl, with just a few differences. The current
implementation of PCRE (release 4.x) corresponds approximately with Perl 5.8, including
support for UTF-8 encoded strings. However, this support has to be explicitly enabled; it
is not the default.

10.20 Statistics box.

Most optimizers need easy access to key information for proper plan generation. Amongst
others, this volatile information consists of the tuple count, size, min- and max-value, the
null-density, and a histogram of the value distribution.

The statistics are management by a Box, which gives a controlled environment to manage
a collection of BATs and system variables.

BATs have to be deposit into the statistics box separately, because the costs attached
maintaining them are high. The consistency of the statistics box is partly the responsibility
of the upper layers. There is no automatic triggering when the BATs referenced are heavily
modified or are being destroyed. They disappear from the statistics box the first time an
invalid access is attempted or during system reboot.

The staleness of the information can be controlled in several ways. The easiest, and
most expensive, is to assure that the statistics are updated when you start the server.
Alternative, you can set a expiration interval, which will update the information only when
it is considered expired. This test will be triggered either at server restart or your explicit
call to update the statistics tables. The statistics table is commited each time you change
it.

Chapter 10: The MAL Modules 179

A forced update can be called upon when the front-end expects the situation to be
changed drastically.

The statistics table is mostly used internally, but once in a while you need a dump for
closed inspection. in your MAL program for inspection. Just use the BBP bind operation
to locate them in the buffer pool.

module statistics;

pattern open():void
address STATopen comment "Locate and open the statistics box";

pattern close():void
address STATclose comment "Close the statistics box ";

pattern destroy():void
address STATdestroy comment "Destroy the statistics box";

pattern take(name:any_1):any_2
address STATtake comment "Take a variable out of the statistics box";

command deposit(name:str) :void
address STATdepositStr comment "Enter a new BAT into the statistics box";

command deposit(name:bat[:any_1,:any_2]) :void
address STATdeposit comment "Enter a new BAT into the statistics box";

pattern releaseAll():void
address STATreleaseAll comment "Release all variables in the box";

pattern release(name:str) :void
address STATreleaseStr comment "Release a single BAT from the box";

command release(name:bat[:any_1,:any_2]):void
address STATrelease comment "Release a single BAT from the box";

pattern toString(name:any_1):str
address STATtoString comment "Get the string representation of an element
in the box";

pattern discard(name:str) :void
address STATdiscard comment "Release a BAT by name from the box";

command discard(name:bat[:any_1,:any_2]) :void
address STATdiscard2 comment "Release a BAT variable from the box";

pattern newIterator()(:lng,:str)
address STATnewIterator comment "Locate next element in the box";

pattern hasMoreElements()(:lng,:str)
address STAThasMoreElements comment "Locate next element in the box";

command update()
address STATupdate comment "Check for stale information";

command forceUpdate()
address STATforceUpdateAll comment "Bring all information up to date";

Chapter 10: The MAL Modules 180

command forceUpdate(bnme:str)
address STATforceUpdate comment "Bring the statistics up to date for one
BAT";

command prelude() :void
address STATprelude comment "Initialize the statistics package";

command epilogue() :void
address STATepilogue comment "Release the resources of the statistics pack-
age";

command dump() :void
address STATdump comment "Display the statistics table";

command getObjects():bat[:int,:str]
address STATgetObjects comment "Return a table with BAT names managed";

command getHotset():bat[:int,:str]
address STATgetHotset comment "Return a table with BAT names that have
been touched since the start of the session";

command getCount(nme:str):lng
address STATgetCount comment "Return latest stored count information";

command getSize(nme:str):lng
address STATgetSize comment "Return latest stored count information";

command getMin(nme:str):lng
address STATgetMin comment "Return latest stored minimum information";

command getMax(nme:str):lng
address STATgetMax comment "Return latest stored maximum information";

command getHistogram(nme:str):bat[:any_1,:any_2]
address STATgetHistogram comment "Return the latest histogram");

10.21 The table interface

A database cannot live without ASCII tabular print/dump/load operations. It is needed
to produce reasonable listings, to exchange answers with a client, and to keep a database
version for backup. This is precisely where the tablet module comes in handy. [This module
should replace all other table dump/load functions]

We start with a simple example to illustrate the plain ASCII representation and the fea-
tures provided. Consider the relational table answer(name:str, age:int, sex:chr, address:str,
dob:date) obtained by calling the routine tablet.page(B1,...,Bn) where the Bi represent
BATS.
["John Doe", 25, ’M’, "Parklane 5", "25-12-1978"]
["Maril Streep", 23, ’F’, "Church 5", "12-07-1980"]
["Mr. Smith", 53, ’M’, "Church 1", "03-01-1950"]

The lines contain the representation of a list in Monet tuple format. This format has
been chosen to ease parsing by any front-end. The scalar values are represented according
to their type. For visual display, the columns are aligned by placing enough tabs between

Chapter 10: The MAL Modules 181

columns based on sampling the underlying bat to determine a maximal column width.
(Note,actual commas are superfluous).

The arguments to the command can be any sequence of BATs, but which are assumed
to be aligned. That is, they all should have the same number of tuples and the j-th tuple
tail of Bi is printed along-side the j-th tuple tail of Bi+1.

Printing both columns of a single bat is handled by tablet as a print of two columns. This
slight inconvenience is catch-ed by the io.print(b) command, which resolves most back-ward
compatibility issues.

In many cases, this output would suffice for communication with a front-end. However,
for visual inspection the user should be provided also some meta information derived from
the database schema. Likewise, when reading a table this information is needed to prepare a
first approximation of the schema namings. This information is produced by the command
tablet.header(B1,...,Bn), which lists the column role name. If no role name is give, a default
is generated based on the BAT name, e.g. B1 tail.

#--#
name, age, sex, address, dob
#--#
["John Doe", 25, ’M’, "Parklane 5", "25-12-1978"]
["Maril Streep", 23, ’F’, "Church 5", "12-07-1980"]
["Mr. Smith", 53, ’M’, "Church 1", "03-01-1950"]

The command tablet.display(B1,...,Bn) is a contraction of tablet.header(); tablet.page().

In many cases, the tablet produced may be too long to consume completely by the front
end. In that case, the user needs page size control, much like the more/less utilities under
Linux. However, no guarantee is given for arbitrarily going back and forth. [but works as
long as we materialize results first]. A portion of the tablet can be printed by identifying
the rows of interest as the first parameter(s) in the page command, e.g.

tablet.page(nil,10,B1,...,Bn); #prints first 10 rows
tablet.page(10,20,B1,...,Bn); #prints next 10 rows
tablet.page(100,nil,B1,...,Bn); #starts printing at tuple 100 until end

A paging system also provides the commands tablet.firstPage(), tablet.nextPage(),
tablet.prevPage(), and tablet.lastPage() using a user controlled tablet size
tablet.setPagesize(L).

The tablet display operations use a client (thread) specific formatting struc-
ture. This structure is initialized using either tablet.setFormat(B1,...,Bn) or
tablet.setFormat(S1,...,Sn) (Bi is a BAT, Si a scalar). Subsequently, some additional
properties can be set/modified, column width and brackets. After printing/paging the
BAT resources should be freed using the command tablet.finish().

Any access outside the page-range leads to removal of the report structure. Subsequent
access will generate an error. To illustrate, the following code fragment would be generated
by the SQL compiler

tablet.setFormat(B1,B2);
tablet.setDelimiters("|","\t","|\n");
tablet.setName(0, "Name");
tablet.setNull(0, "?");

Chapter 10: The MAL Modules 182

tablet.setWidth(0, 15);
tablet.setBracket(0, " ", ",");
tablet.setName(1, "Age");
tablet.setNull(1, "-");
tablet.setDecimal(1, 9,2);
tablet.SQLtitle("Query: select * from tables");
tablet.page();
tablet.SQLfooter(count(B1),cpuTicks);

This table is printed with tab separator(s) between elements and the bar (|) to mark
begin and end of the string. The column parameters give a new title, a null replacement
value, and the preferred column width. Each column value is optionally surrounded by
brackets. Note, scale and precision can be applied to integer values only. A negative scale
leads to a right adjusted value.

The title and footer operations are SQL specific routines to decorate the output.

Another example involves printing a two column table in XML format. [Alternative,
tablet.XMLformat(B1,B2) is a shorthand for the following:]

tablet.setFormat(B1,B2);
tablet.setTableBracket("<rowset>","</rowset>");
tablet.setRowBracket("<row>","</row>");
tablet.setBracket(0, "<name>", "</name>");
tablet.setBracket(1, "<age>", "</age>");
tablet.page();

10.21.1 Tablet properties

More detailed header information can be obtained with the command
tablet.setProperties(S), where S is a comma separated list of properties of inter-
est, followed by the tablet.header(). The properties to choose from are: bat, name, type,
width, sorted, dense, key, base, min, max, card,....

#--------------------------------------#
B1, B2, B3, B4, B5 # BAT
str, int, chr, str, date # type
true, false, false, false, false # sorted
true, true, false, false, false # key
, 23, ’F’, , # min
, 53, ’M’, , # max
4, 4, 4, 4, 4 # count
4,i 3, 2, 2, 3 # card
name, age, sex, address, dob # name
#--------------------------------------#

10.21.2 Scalar tablets

In line with the 10-year experience of Monet, printing scalar values follow the tuple layout
structure. This means that the header() command is also applicable. For example, the
sequence "i:=0.2;v:=sin(i); tablet.display(i,v);" produces the answer:

#----------------#

Chapter 10: The MAL Modules 183

i, v
#----------------#
[0.2, 0.198669]
#----------------#

All other formatted printing should be done with the printf() operations contained in
the module io.

10.21.3 Tablet dump/restore

Dump and restore operations are abstractions over sequence of tablet commands.
The command tablet.dump(stream,B1,...,Bn) is a contraction of the sequence
tablet.setStream(stream); tablet.setProperties("name,type,dense,sorted,key,min,max");
tablet.header(B1,..,Bn); tablet.page(B1,..,Bn). The result can be read by
tablet.load(stream,B1,..,Bn) command. If loading is successful, e.g. no parsing
errors occurred, the tuples are appended to the corresponding BATs.

10.21.4 Front-end extension

A general bulk loading of foreign tables, e.g. CSV-files and fixed position records,
is not provided. Instead, we extend the list upon need. Currently, the routines
tablet.SQLload(stream,delim1,delim2, B1,..,Bn) reads the files using the Oracle(?) storage.
The counterpart for dumping is tablet.SQLdump(stream,delim1,delim2);

10.21.5 The commands

The load operation is for bulk loading a table, each column will be loaded into its own bat.
The arguments are void-aligned bats describing the input, ie the name of the column, the
tuple separator and the type. The nr argument can be -1 (The input (datafile) is read until
the end) or a maximum.

The dump operation is for dumping a set of bats, which are aligned. Again with void-
aligned arguments, with name (currently not used), tuple separator (the last is the record
separator) and bat to be dumped. With the nr argument the dump can be limited (-1 for
unlimited).

The output operation is for ordered output. A bat (possibly form the collection) gives
the order. For each element in the order bat the values in the bats are searched, if all are
found they are output in the datafile, with the given separators.

The scripts from the tablet.mil file are all there too for backward compatibility with the
old Mload format files.

The load format loads the format file, since the old format file was in a table format it
can be loaded with the load command.

The result from load format can be used with load data to load the data into a set of
new bats.

These bats can be made persistent with the make persistent script or merge with existing
bats with the merge data script.

The dump format scripts dump a format file for a given set of to be dumped bats. These
bats can be dumped with dump data.

the major tablet shuffling routines module tablet;

Chapter 10: The MAL Modules 184

command load(names:bat[:oid,:str], seps:bat[:oid,:str],
types:bat[:oid,:str], datafile:str, nr:int) :bat[:str,:bat] address CMDtablet load
comment "Load a bat using specific format.";

command input(names:bat[:oid,:str], seps:bat[:oid,:str],
types:bat[:oid,:str], s:streams, nr:int) :bat[:str,:bat] address CMDtablet input
comment "Load a bat using specific format.";

command dump(names:bat[:oid,:str], seps:bat[:oid,:str],
bats:bat[:oid,:bat], datafile:str, nr:int) :void address CMDtablet dump com-
ment "Dump the bat in ASCII format";

command output(order:bat[:any_1,:any_2], seps:bat[:oid,:str],
bats:bat[:oid,:bat], s:streams) :void address CMDtablet output comment "Send
the bat to an output stream.";

pattern display(v:any...):int
address TABdisplayRow comment "Display a formatted row";

pattern display(v:bat[:any_1,:any]...):int
address TABdisplayTable comment "Display a formatted table";

pattern page(b:bat[:any_1,:any]...):int
address TABpage comment "Display all pages at once without header";

pattern header(b:any...):int
address TABheader comment "Display the minimal header for the table";

command setProperties(prop:str):int
address TABsetProperties comment "Define the set of properties";

pattern dump(s:streams,b:bat[:any,:any]...):int
address TABdump comment "Print all pages with header to a stream";

pattern setFormat(b:any...):void
address TABsetFormat comment "Initialize a new reporting structure.";

command finish():void
address TABfinishReport comment "Free the storage space of the report de-
scriptor";

command setStream(s:streams):void
address TABsetStream comment "Redirect the output to a stream.";

command setPivot(b:bat[:void,:oid]) :void
address TABsetPivot comment "The pivot bat identifies the tuples of interest.
The only requirement is that all keys mentioned in the pivot tail exist in all
BAT parameters of the print comment. The pivot also provides control over
the order in which the tuples are produced.";

command setDelimiter(sep:str):void
address TABsetDelimiter comment "Set the column separator.";

command setTableBracket(lbrk:str,rbrk:str)
address TABsetTableBracket comment "Format the brackets around a table";

Chapter 10: The MAL Modules 185

command setRowBracket(lbrk:str,rbrk:str)
address TABsetRowBracket comment "Format the brackets around a row";
Set the column properties

pattern setColumn(idx:int, v:any_1)
address TABsetColumn comment "Bind i-th output column to a variable";

command setName(idx:int, nme:str)
address TABsetColumnName comment "Set the display name for a given col-
umn";

command setBracket(idx:int,lbrk:str,rbrk:str)
address TABsetColumnBracket comment "Format the brackets around a field";

command setNull(idx:int, fmt:str)
address TABsetColumnNull comment "Set the display format for a null value
for a given column";

command setWidth(idx:int, maxwidth:int)
address TABsetColumnWidth comment "Set the maximal display witdh for a
given column. All values exceeding the length are simple shortened without
any notice.";

command setPosition(idx:int,f:int,i:int)
address TABsetColumnPosition comment "Set the character position to use for
this field when loading according to fixed (punch-card) layout.";

command setDecimal(idx:int,s:int,p:int)
address TABsetColumnDecimal comment "Set the scale and precision for nu-
meric values";

command firstPage():void
address TABfirstPage comment "Produce the first page of output";

command lastPage():void
address TABlastPage comment "Produce the last page of output";

command nextPage():void
address TABnextPage comment "Produce the next page of output";

command prevPage():void
address TABprevPage comment "Produce the prev page of output";

command getPageCnt():void
address TABgetPageCnt comment "Return the size in number of pages";

command getPage(i:int):void
address TABgetPage comment "Produce the i-th page of output";

10.22 Transaction management

In the philosophy of Monet, transaction management overhead should only be paid when
necessary. Transaction management is for this purpose implemented as a module. This code
base is largely absolute and should be re-considered when serious OLTP is being supported.
Note, however, the SQL front-end obeys transaction semantics.

Chapter 10: The MAL Modules 186

module transaction;

command sync() :bit
address TRNglobal sync comment "Save all persistent BATs";

command commit() :bit
address TRNglobal commit comment "Global commit on all BATs";

command abort() :bit
address TRNglobal abort comment "Global abort on all BATs";

command subcommit(b:bat[:any_1,:str]):bit
address TRNsubcommit comment "commit only a set of BATnames, passed in
the tail (to which you must have exclusive access!)";

pattern commit(c:any...)
address TRNtrans commit comment "Commit changes in certain BATs.";

pattern abort(c:any...)
address TRNtrans abort comment "Abort changes in certain BATs.";

pattern clean(c:any...)
address TRNtrans clean comment "Declare a BAT clean without flushing to
disk.";

command prev(b:bat[:any_1,:any_2]):bat[:any_1,:any_2]
address TRNtrans prev comment "The previous stae of this BAT";

command alpha(b:bat[:any_1,:any_2]) :bat[:any_1,:any_2]
address TRNtrans alpha comment "List insertions since last commit.";

command delta(b:bat[:any_1,:any_2]) :bat[:any_1,:any_2]
address TRNtrans delta comment "List deletions since last commit.";

Chapter 11: The Inner Core 187

11 The Inner Core

The innermost library of the MonetDB database system is formed by the library called
GDK, an abbreviation of Goblin Database Kernel. Its development was originally rooted
in the design of a pure active-object-oriented programming language, before development
was shifted towards a re-usable database kernel engine.

GDK is a C library that provides ACID properties on a DSM model [Copeland85] , using
main-memory database algorithms [Garcia-Molina92] built on virtual-memory OS primi-
tives and multi-threaded parallelism. Its implementation has undergone various changes
over its decade of development, many of which were driven by external needs to obtain a
robust and fast database system.

The coding scheme explored in GDK has also laid a foundation to communicate over
time experiences and to provide (hopefully) helpful advice near to the place where the code-
reader needs it. Of course, over such a long time the documentation diverges from reality.
Especially in areas where the environment of this package is being described. Consider such
deviations as historic landmarks, e.g. crystallization of brave ideas and mistakes rectified
at a later stage.

11.1 Short Outline

The facilities provided in this implementation are:

• GDK or Goblin Database Kernel routines for session management
• BAT routines that define the primitive operations on the database tables (BATs).
• BBP routines to manage the BAT Buffer Pool (BBP).
• ATOM routines to manipulate primitive types, define new types using an ADT inter-

face.
• HEAP routines for manipulating heaps: linear spaces of memory that are GDK’s vehicle

of mass storage (on which BATs are built).
• DELTA routines to access inserted/deleted elements within a transaction.
• HASH routines for manipulating GDK’s built-in linear-chained hash tables, for accel-

erating lookup searches on BATs.
• TM routines that provide basic transaction management primitives.
• TRG routines that provided active database support. [DEPRECATED]
• ALIGN routines that implement BAT alignment management.

The Binary Association Table (BAT) is the lowest level of storage considered in the
Goblin runtime system [Goblin] . A BAT is a self-descriptive main-memory structure that
represents the binary relationship between two atomic types. The association can be defined
over:

void: virtual-OIDs: a densely ascending column of OIDs (takes zero-storage).

bit: Booleans, implemented as one byte values.

chr: A single character (8 bits integers). DEPRECATED for storing text (Unicode
not supported).

Chapter 11: The Inner Core 188

bte: Tiny (1-byte) integers (8-bit integers).

sht: Short integers (16-bit integers).

int: This is the C int type (32-bit).

oid: Unique long int values uses as object identifier. Highest bit cleared always.
Thus, oids-s are 31-bit numbers on 32-bit systems, and 63-bit numbers on 64-
bit systems.

wrd: Machine-word sized integers (32-bit on 32-bit systems, 64-bit on 64-bit systems).

ptr: Memory pointer values. DEPRECATED. Can only be stored in transient BATs.

flt: The IEEE float type.

dbl: The IEEE double type.

lng: Longs: the C long long type (64-bit integers).

str: UTF-8 strings (Unicode). A zero-terminated byte sequence.

bat: Bat descriptor. This allows for recursive adminstered tables, but severely com-
plicates transaction management. Therefore, they CAN ONLY BE STORED
IN TRANSIENT BATs. [on the list to become depreciated,

This model can be used as a back-end model underlying other -higher level- models,
in order to achieve better performance and data independence in one go. The relational
model and the object-oriented model can be mapped on BATs by vertically splitting every
table (or class) for each attribute. Each such a column is then stored in a BAT with type
bat[oid,attribute], where the unique object identifiers link tuples in the different BATs.
Relationship attributes in the object-oriented model hence are mapped to bat[oid,oid] tables,
being equivalent to the concept of join indexes [Valduriez87] .

The set of built-in types can be extended with user-defined types through an ADT
interface. They are linked with the kernel to obtain an enhanced library, or they are
dynamically loaded upon request.

Types can be derived from other types. They represent something different than that
from which they are derived, but their internal storage management is equal. This feature
facilitates the work of extension programmers, by enabling reuse of implementation code,
but is also used to keep the GDK code portable from 32-bits to 64-bits machines: the oid
and ptr types are derived from int on 32-bits machines, but is derived from lng on 64 bits
machines. This requires changes in only two lines of code each.

To accelerate lookup and search in BATs, GDK supports one built-in search accelerator:
hash tables. We choose an implementation efficient for main-memory: bucket chained hash
[LehCar86,Analyti92] . Alternatively, when the table is sorted, it will resort to merge-scan
operations or binary lookups.

BATs are built on the concept of heaps, which are large pieces of main memory. They can
also consist of virtual memory, in case the working set exceeds main-memory. In this case,
GDK supports operations that cluster the heaps of a BAT, in order to improve performance
of its main-memory.

Chapter 11: The Inner Core 189

11.1.1 Rationale

The rationale for choosing a BAT as the building block for both relational and object-
oriented system is based on the following observations:

• - Given the fact that CPU speed and main-memory increase in current workstation
hardware for the last years has been exceeding IO access speed increase, traditional
disk-page oriented algorithms do no longer take best advantage of hardware, in most
database operations.

Instead of having a disk-block oriented kernel with a large memory cache, we choose
to build a main-memory kernel, that only under large data volumes slowly degrades to
IO-bound performance, comparable to traditional systems [boncz95,boncz96] .

• - Traditional (disk-based) relational systems move too much data around to save on
(main-memory) join operations.

The fully decomposed store (DSM [Copeland85)] assures that only those attributes of
a relation that are needed, will have to be accessed.

• - The data management issues for a binary association is much easier to deal with than
traditional struct-based approaches encountered in relational systems.

• - Object-oriented systems often maintain a double cache, one with the disk-based repre-
sentation and a C pointer-based main-memory structure. This causes expensive conver-
sions and replicated storage management.\\ GDK does not do such ‘pointer swizzling’.
It used virtual-memory (mmap()) and buffer management advice (madvise()) OS prim-
itives to cache only once. Tables take the same form in memory as on disk, making the
use of this technique transparent [oo7] .

A RDBMS or OODBMS based on BATs strongly depends on our ability to efficiently
support tuples and to handle small joins, respectively.

The remainder of this document describes the Goblin Database kernel implementation
at greater detail. It is organized as follows:

GDK Interface:
It describes the global interface with which GDK sessions can be started and
ended, and environment variables used.

Binary Association Tables:
As already mentioned, these are the primary data structure of GDK. This
chapter describes the kernel operations for creation, destruction and basic ma-
nipulation of BATs and BUNs (i.e. tuples: Binary UNits).

BAT Buffer Pool:
All BATs are registered in the BAT Buffer Pool. This directory is used to guide
swapping in and out of BATs. Here we find routines that guide this swapping
process.

GDK Extensibility:
Atoms can be defined using a unified ADT interface. There is also an interface
to extend the GDK library with dynamically linked object code.

Chapter 11: The Inner Core 190

GDK Utilities:
Memory allocation and error handling primitives are provided. Layers built on
top of GDK should use them, for proper system monitoring. Thread manage-
ment is also included here.

Transaction Management:
For the time being, we just provide BAT-grained concurrency and global trans-
actions. Work is needed here.

BAT Alignment:
Due to the mapping of multi-ary datamodels onto the BAT model, we expect
many correspondences among BATs, e.g. bat(oid,attr1),.. bat(oid,attrN) ver-
tical decompositions. Frequent activities will be to jump from one attribute
to the other (‘bunhopping’). If the head columns are equal lists in two BATs,
merge or even array lookups can be used instead of hash lookups. The alignment
interface makes these relations explicitly manageable.

In GDK, complex data models are mapped with DSM on binary tables. Usually,
one decomposes N-ary relations into N BATs with an oid in the head column,
and the attribute in the tail column. There may well be groups of tables that
have the same sets of oids, equally ordered. The alignment interface is intended
to make this explicit. Implementations can use this interface to detect this
situation, and use cheaper algorithms (like merge-join, or even array lookup)
instead.

BAT Iterators:
Iterators are C macros that generally encapsulate a complex for-loop. They
would be the equivalent of cursors in the SQL model. The macro interface
(instead of a function call interface) is chosen to achieve speed when iterating
main-memory tables.

Common BAT Operations:
These are much used operations on BATs, such as aggregate functions
and relational operators. They are implemented in terms of BAT- and
BUN-manipulation GDK primitives.

11.2 Interface Files

In this section we summarize the user interface to the GDK library. It consist of a header
file (gdk.h) and an object library (gdklib.a), which implements the required functionality.
The header file must be included in any program that uses the library. The library must
be linked with such a program.

11.2.1 Database Context

The MonetDB environment settings are collected in a configuration file. Amongst others
it contains the location of the database directory. First, the database directory is closed
for other servers running at the same time. Second, performance enhancements may take
effect, such as locking the code into memory (if the OS permits) and preloading the data
dictionary. An error at this stage normally lead to an abort.

Chapter 11: The Inner Core 191

11.2.2 GDK session handling

int GDKinit (char *db, char *dbfarm, int allocmap)
int GDKexit (int status)

The session is bracketed by GDKinit and GDKexit. Initialization involves setting up
the administration for database access, such as memory allocation for the database buffer
pool. During the exit phase any pending transaction is aborted and the database is freed
for access by other users. A zero is returned upon encountering an erroneous situation.

11.3 Binary Association Tables

Having gone to the previous preliminary definitions, we will now introduce the structure
of Binary Association Tables (BATs) in detail. They are the basic storage unit on which
GDK is modelled.

The BAT holds an unlimited number of binary associations, called BUNs (Binary UNits).
The two attributes of a BUN are called head (left) and tail (right) in the remainder of this
document.

The above figure shows what a BAT looks like. It consists of two columns, called head
and tail, such that we have always binary tuples (BUNs). The overlooking structure is the
BAT record. It points to a heap structure called the BUN heap. This heap contains the
atomic values inside the two columns. If they are fixed-sized atoms, these atoms reside
directly in the BUN heap. If they are variable-sized atoms (such as string or polygon),
however, the columns has an extra heap for storing those (such variable-sized atom heaps
are then referred to as Head Heaps and Tail Heaps). The BUN heap then contains integer
byte-offsets (fixed-sized, of course) into a head- or tail-heap. The BUN heap contains a
contiguous range of BUNs. It starts after the first pointer, and finishes at the end in the
free area of the BUN. All BUNs after the inserted pointer have been added in the last
transaction (and will be deleted on a transaction abort). All BUNs between the deleted
pointer and the first have been deleted in this transaction (and will be reinserted at a
transaction abort).

The location of a certain BUN in a BAT may change between successive library routine
invocations. Therefore, one should avoid keeping references into the BAT storage area for
long periods. Passing values between the library routines and the enclosing C program is
primarily through value pointers of type ptr. Pointers into the BAT storage area should
only be used for retrieval. Direct updates of data stored in a BAT is forbidden. The user
should adhere to the interface conventions to guarantee the integrity rules and to maintain
the (hidden) auxiliary search structures.

11.3.1 GDK variant record type

When manipulating values, MonetDB puts them into value records. The built-in types have
a direct entry in the union. Others should be represented as a pointer of memory in pval
or as a string, which is basically the same. In such cases the len field indicates the size of
this piece of memory.

Chapter 11: The Inner Core 192

11.3.2 The BAT record

The elements of the BAT structure are introduced in the remainder. Instead of using the
underlying types hidden beneath it, one should use a BAT type that is supposed to look
like this:

typedef struct {
/* static BAT properties */
bat batCacheid; /* bat id: index in BBPcache */
int batPersistence; /* persistence mode */
bit batCopiedtodisk; /* BAT is saved on disk? */
bit batSet; /* all tuples in the BAT are unique? */
sht batElmshift /* log2 of width */
sht batElmsize /* width in byte of the BUNs */
/* dynamic BAT properties */
int batHeat; /* heat of BAT in the BBP */
sht batDirty; /* BAT modified after last commit? */
bit batDirtydesc; /* BAT descriptor specific dirty flag */
bit batDirtybuns; /* BUN heap specific dirty flag */
Heap* batBuns; /* Heap where the buns are stored */
/* DELTA status */
BUN batDeleted; /* first deleted BUN */
BUN batFirst; /* empty BUN before the first alive BUN */
BUN batInserted; /* first inserted BUN */
size_t batCount; /* Tuple count */
/* Head properties */
int htype; /* Head type number */
str hident; /* name for head column */
bit hkey; /* head values should be unique? */
bit hsorted; /* are head values currently ordered? */
bit hvarsized; /* for speed: head type is varsized? */
oid halign; /* alignment OID for head. */
bit hheapdirty; /* head heap specific dirty flag */
/* Head storage */
int hloc; /* byte-offset in BUN for head elements */
Heap *hheap; /* heap for varsized head values */
Hash *hhash; /* linear chained hash table on head */
/* Tail properties */
int ttype; /* Tail type number */
str tident; /* name for tail column */
bit tkey; /* tail values should be unique? */
bit tsorted; /* are tail values currently ordered? */
bit tvarsized; /* for speed: tail type is varsized? */
oid talign; /* alignment OID for head. */
bit theapdirty; /* tail heap specific dirty flag */
/* Tail storage */
int tloc; /* byte-offset in BUN for tail elements */
Heap theap; /* heap for varsized tail values */

Chapter 11: The Inner Core 193

Hash thash; /* linear chained hash table on tail */
} BAT;

The internal structure of the BAT record is in fact much more complex, but GDK
programmers should refrain of making use of that.

The reason for this complex structure is to allow for a BAT to exist in two incarnations
at the time: the normal view and the reversed view. Each bat b has a BATmirror(b) which
has the negative cacheid of b in the BBP.

Since we don’t want to pay cost to keep both views in line with each other under BAT
updates, we work with shared pieces of memory between the two views. An update to one
will thus automatically update the other. In the same line, we allow synchronized BATs
(BATs with identical head columns, and marked as such in the BAT Alignment interface)
now to be clustered horizontally.

11.3.3 Heap Management

Heaps are the low-level entities of mass storage in BATs. Currently, they can either be
stored on disk, loaded into memory, or memory mapped.
int HEAPalloc (Heap *h, size t nitems, size t itemsize);
int HEAPfree (Heap *h);
int HEAPextend (Heap *h, size t size);
int HEAPload (Heap *h, str nme,ext, int trunc);
int HEAPsave (Heap *h, str nme,ext);
int HEAPcopy (Heap *dst,*src);
int HEAPdelete (Heap *dst, str o, str ext);
int HEAPwarm (Heap *h);
int

These routines should be used to alloc free or extend heaps; they isolate you from the
different ways heaps can be accessed.

11.3.4 Internal HEAP Chunk Management

Heaps are used in BATs to store data for variable-size atoms. The implementor must
manage malloc()/free() functionality for atoms in this heap. A standard implementation is
provided here.

void HEAP initialize (Heap* h, size\ t nbytes, size\ t nprivate, int align)

void HEAP destroy (Heap* h)

int HEAP malloc (Heap* heap, size\ t nbytes)

void HEAP free (Heap *heap, size\ t block)

int HEAP private (Heap* h)

void HEAP printstatus (Heap* h)

void HEAP check (Heap* h)

The heap space starts with a private space that is left untouched by the normal chunk
allocation. You can use this private space e.g. to store the root of an rtree HEAP malloc
allocates a chunk of memory on the heap, and returns an index to it. HEAP free frees a
previously allocated chunk HEAP private returns an integer index to private space.

Chapter 11: The Inner Core 194

11.3.5 BAT construction

BAT* BATnew (int headtype, int tailtype, size t cap)
BAT* BATclone (BAT *c, size t cap)
BAT* BATextend (BAT *b, size t newcap)

A temporary BAT is instantiated using BATnew with the type aliases of the required
binary association. The aliases include the built-in types, such as TYPE int....TYPE ptr,
and the atomic types introduced by the user. The initial capacity to be accommodated
within a BAT is indicated by cap. Their extend is automatically incremented upon storage
overflow. Failure to create the BAT results in a NULL pointer.

The routine BATclone creates an empty BAT storage area with the properties inherited
from its argument.

11.3.6 BUN manipulation

BAT* BATins (BAT *b, BAT *c, bit force)
BAT* BATappend (BAT *b, BAT *c, bit force)
BAT* BATdel (BAT *b, BAT *c, bit force)
BAT* BUNins (BAT *b, ptr left, ptr right, bit force)
BAT* BUNappend (BAT *b, ptr right, bit force)
BAT* BUNreplace (BAT *b, ptr left, ptr right, bit force)
int BUNdel (BAT *b, ptr left, ptr right, bit force)
int BUNdelHead (BAT *b, ptr left, bit force)
BUN BUNfnd (BAT *b, ptr head)
void BUNfndOID (BUN result, BAT *b, oid *head)
void BUNfndSTD (BUN result, BAT *b, ptr head)
BUN BUNlocate (BAT *b, ptr head, ptr tail)
ptr BUNhead (BAT *b, BUN p)
ptr BUNtail (BAT *b, BUN p)

The BATs contain a number of fixed-sized slots to store the binary associations. These
slots are called BUNs or BAT units. A BUN variable is a pointer into the storage area of
the BAT, but it has limited validity. After a BAT modification, previously obtained BUNs
may no longer reside at the same location.

The association list does not contain holes. This density permits users to quickly access
successive elements without the need to test the items for validity. Moreover, it simplifies
transport to disk and other systems. The negative effect is that the user should be aware
of the evolving nature of the sequence, which may require copying the BAT first.

The update operations come in three flavors. Element-wise updates can use BUNins,
BUNappend, BUNreplace, BUNdel, and BUNdelHead. The batch update operations are
BATins, BATappend and BATdel.

Only experts interested in speed may use BUNfastins, since it skips most consistency
checks, does not update search accelerators, and does not maintain properties such as the
hsorted and tsorted flags. Beware!

The routine BUNfnd provides fast access to a single BUN providing a value for the head
of the binary association. A very fast shortcut for BUNfnd if the selection type is known
to be integer or OID, is provided in the form of the macro BUNfndOID.

To select on a tail, one should use the reverse view obtained by BATmirror.

Chapter 11: The Inner Core 195

The routines BUNhead and BUNtail return a pointer to the first and second value in
an association, respectively. To guard against side effects on the BAT, one should normally
copy this value into a scratch variable for further processing.

Behind the interface we use several macros to access the BUN fixed part and the variable
part. The BUN operators always require a BAT pointer and BUN identifier.
• BAThtype(b) and BATttype(b) find out the head and tail type of a BAT.
• BUNfirst(b) returns a BUN pointer to the first BUN as a BAT.
• BUNlast(b) returns the BUN pointer directly after the last BUN in the BAT.
• BUNsize(b) gives the size in bytes of each BUN.
• BUNindex(b, p) computes the index number of a given BUN.
• BUNptr(b, i) computes the address of the i-th BUN in the BAT.
• BUNhead(b, p) and BUNtail(b, p) return pointers to the head-value and tail-value in

a given BUN.
• BUNhloc(b, p) and BUNtloc(b, p) do the same thing, but knowing in advance that the

head-atom resp. tail-atom of a BAT is fixed size.
• BUNhvar(b, p) and BUNtvar(b, p) do the same thing, but knowing in advance that

the head-atom resp. tail-atom of a BAT is variable sized.

11.3.7 BAT properties

size t BATcount (BAT *b)
size t BATbuncount (BAT *b)
str BATrename (BAT *b, str nme)
BAT * BATkey (BAT *b, int onoff)
BAT * BATset (BAT *b, int onoff)
BAT * BATmode (BAT *b, int mode)
BAT * BATsetaccess (BAT *b, int mode)
int BATdirty (BAT *b)
int BATgetaccess (BAT *b)
int BATversion (BAT *b)

The function BATcount returns the number of associations stored in the BAT.
The function BATbuncount returns the space that is occupied in associations in the

BAT. This is not the same as BATcount, since the first N associations may be unused or
delta data.

The BAT is given a new logical name using BATrename.
The integrity properties to be maintained for the BAT are controlled separately. A key

property indicates that duplicates in the association dimension are not permitted. The BAT
is turned into a set of associations using BATset. Key and set properties are orthogonal
integrity constraints. The strongest reduction is obtained by making the BAT a set with
key restrictions on both dimensions.

The persistency indicator tells the retention period of BATs. The system support three
modes: PERSISTENT, TRANSIENT, and SESSION. The PERSISTENT BATs are au-
tomatically saved upon session boundary or transaction commit. TRANSIENT BATs are
removed upon transaction boundary. SESSION BATs are removed at the end of a session.

Chapter 11: The Inner Core 196

They are normally used to maintain temporary results. All BATs are initially TRANSIENT
unless their mode is changed using the routine BATmode.

The BAT properties may be changed at any time using BATkey, BATset, and BATmode.

Valid BAT access properties can be set with BATsetaccess and BATgetaccess:
BAT READ, BAT APPEND, and BAT WRITE. BATs can be designated to be read-only.
In this case some memory optimizations may be made (slice and fragment bats can point
to stable subsets of a parent bat). A special mode is append-only. It is then allowed to
insert BUNs at the end of the BAT, but not to modify anything that already was in there.

11.3.8 BAT manipulation

BAT * BATclear (BAT *b)
BAT * BATcopy (BAT *b, int ht, int tt, int writeable)
BAT * BATmark (BAT *b, oid base)
BAT * BATmark grp (BAT *b, BAT *g, oid *s)
BAT * BATnumber (BAT *b)
BAT * BATmirror (BAT *b)
BAT * BATreverse (BAT *b)
BAT * BATreset (BAT *b)

The routine BATclear removes the binary associations, leading to an empty, but (re-
)initialized BAT. Its properties are retained. A temporary copy is obtained with BATcopy.
The new BAT has an unique name. The routine BATmark creates a binary association
that introduces a new tail column of fresh densely ascending OIDs. The base OID can be
given explicitly, or if oid nil is passed, is chosen as a new unique range by the system. A
similar routine is BATnumber, which copies the heads and assigns an integer index to the
tail. It plays a crucial role in administration of query results.

The routine BATmirror returns the mirror image BAT (where tail is head and head is
tail) of that same BAT. This does not involve a state change in the BAT (as previously):
both views on the BAT exist at the same time.

11.3.9 BAT Input/Output

BAT * BATload (str name)
BAT * BATsave (BAT *b)
int BATmmap (BAT *b, int bn, int hh, int th)
int BATmadvise (BAT *b, int bn, int hh, int th)
int BATmmap pin (BAT *b)
int BATmmap unpin (BAT *b)
int BATdelete (BAT *b)
BAT * BATconvert (str name, int direction)

A BAT created by BATnew is considered temporary until one calls the routine BATsave
or BATmode. This routine reserves disk space and checks for name clashes in the BAT
directory. It also makes the BAT persistent. The empty BAT is initially marked as ordered
on both columns. Failure to read or write the BAT results in a NULL, otherwise it returns
the BAT pointer.

The BATconvert converts a BAT that contains data saved on hardware with a differ-
ent byte order (little endian vs big endian), into the correct format. Direction is either

Chapter 11: The Inner Core 197

CONV NTOH or CONV HTON, indication conversion from network to host or host to
network format.

MonetDB now has a mmap trim thread that takes care of flushing the memory
mapped regions when MonetDB starts to consume too much main memory. Heaps
(that are randomly accessed) can be excluded from this mechanism, by pinning them.
BATmmap\ pin/unpin do this for all heaps of a BAT.

11.3.10 Heap Storage Modes

The discriminative storage modes are memory-mapped, compressed, or loaded in memory.
The BATmmap() changes the storage mode of each heap associated to a BAT. As can be
seen in the bat record, each BAT has one BUN-heap (bn), and possibly two heaps (hh
and th) for variable-sized atoms. The BATmadvise call works in the same way. Using
the madvise() system call it issues buffer management advise to the OS kernel, as for the
expected usage pattern of the memory in a heap.

11.3.11 Printing

int BATprintf (stream *f, BAT *b)
int BATmultiprintf (stream *f, int argc, BAT *b[], int printoid,

int order, int printorderby)
The functions to convert BATs into ASCII and the reverse use internally defined for-

mats. They are primarily meant for ease of debugging and to a lesser extent for output
processing. Printing a BAT is done essentially by looping through its components, printing
each association. If an index is available, it will be used. The BATmultiprintf command
assumes a set of BATs with corresponding oid-s in the head columns. It performs the
multijoin over them, and prints the multi-column result on the file.

11.3.12 BAT clustering

BAT * BATsort (BAT *b)
BAT * BATsort rev (BAT *b)
BAT * BATorder (BAT *b)
BAT * BATorder rev (BAT *b)
BAT * BATrevert (BAT *b)
int BATordered (BAT *b)

When working in a main-memory situation, clustering of data on disk-pages is not im-
portant. Whenever mmap()-ed data is used intensively, reducing the number of page faults
is a hot issue.

The above functions rearrange data in MonetDB heaps (used for storing BUNs var-sized
atoms, or accelerators). Applying these clusterings will allow that MonetDB’s main-memory
oriented algorithms work efficiently also in a disk-oriented context.

The BATsort functions return a copy of the input BAT, sorted in ascending order on
the head column. BATordered starts a check on the head values to see if they are ordered.
The result is returned and stored in the hsorted field of the BAT. BATorder is similar to
BATsort, but sorts the BAT itself, rather than returning a copy (BEWARE: this operation
destroys the delta information. TODO:fix). The BATrevert puts all the live BUNs of a
BAT in reverse order. It just reverses the sequence, so this does not necessarily mean that
they are sorted in reverse order!

Chapter 11: The Inner Core 198

11.4 BAT Buffer Pool

int BBPfix (bat bi)
int BBPunfix (bat bi)
int BBPincref (bat bi, int logical)
int BBPdecref (bat bi, int logical)
void BBPhot (bat bi)
void BBPcold (bat bi)
str BBPname (bat bi)
bat BBPindex (str nme)
BAT* BATdescriptor (bat bi)
bat BBPcacheid (BAT *b)

The BAT Buffer Pool module contains the code to manage the storage location of BATs.
It uses two tables BBPlogical and BBphysical to relate the BAT name with its corresponding
file system name. This information is retained in an ASCII file within the database home
directory for ease of inspection. It is loaded upon restart of the server and saved upon
transaction commit (if necessary).

The remaining BBP tables contain status information to load, swap and migrate the
BATs. The core table is BBPcache which contains a pointer to the BAT descriptor with
its heaps. A zero entry means that the file resides on disk. Otherwise it has been read or
mapped into memory.

BATs loaded into memory are retained in a BAT buffer pool. They retain their position
within the cache during their life cycle, which make indexing BATs a stable operation.
Their descriptor can be obtained using BBPcacheid.

The BBPindex routine checks if a BAT with a certain name is registered in the buffer
pools. If so, it returns its BAT id. The BATdescriptor routine has a BAT id parameter,
and returns a pointer to the corresponding BAT record (after incrementing the reference
count). The BAT will be loaded into memory, if necessary.

11.5 GDK Extensibility

GDK can be extended with new atoms, search accelerators and storage modes.

11.5.1 Atomic Type Descriptors

The atomic types over which the binary associations are maintained are described by an
atom descriptor.
void ATOMproperty (str nme, char *property, int (*fcn)()));
int ATOMindex (char *nme);
int ATOMdump ();
void ATOMdelete (int id);
str ATOMname (int id);
int ATOMsize (int id);
int ATOMalign (int id);
int ATOMvarsized (int id);
ptr ATOMnilptr (int id);
int ATOMfromstr (int id, str s, int* len, ptr* v dst);
int ATOMtostr (int id, str s, int* len, ptr* v dst);

Chapter 11: The Inner Core 199

int ATOMhash (int id, ptr val, in mask);
int ATOMcmp (int id, ptr val 1, ptr val 2);
int ATOMconvert (int id, ptr v, int direction);
int ATOMfix (int id, ptr v);
int ATOMunfix (int id, ptr v);
int ATOMheap (int id, Heap *hp, size t cap);
void ATOMheapconvert (int id, Heap *hp, int direction);
int ATOMheapcheck (int id, Heap *hp, HeapRepair *hr);
int ATOMput (int id, Heap *hp, BUN pos dst, ptr val src);
int ATOMdel (int id, Heap *hp, BUN v src);
int ATOMlen (int id, ptr val);
ptr ATOMnil (int id);
int ATOMformat (int id, ptr val, char** buf);
int ATOMprint (int id, ptr val, stream *fd);
ptr ATOMdup (int id, ptr val);

11.5.2 Atom Definition

User defined atomic types can be added to a running system with the following interface:.
• ATOMproperty() registers a new atom definition, if there is no atom registered yet

under that name. It then installs the attribute of the named property. Valid names
are "size", "align", "null", "fromstr", "tostr", "cmp", "hash", "put", "get", "del",
"length" and "heap".

• ATOMdelete() unregisters an atom definition.
• ATOMindex() looks up the atom descriptor with a certain name.

11.5.3 Atom Manipulation

• The ATOMname() operation retrieves the name of an atom using its id.
• The ATOMsize() operation returns the atoms fixed size.
• The ATOMalign() operation returns the atoms minimum alignment. If the alignment

info was not specified explicitly during atom install, it assumes the maximum value of
{1,2,4,8} smaller than the atom size.

• The ATOMnilptr() operation returns a pointer to the nil-value of an atom. We usually
take one dedicated value halfway down the negative extreme of the atom range (if such
a concept fits), as the nil value.

• The ATOMnil() operation returns a copy of the nil value, allocated with GDKmalloc().
• The ATOMheap() operation creates a new var-sized atom heap in ’hp’ with capacity

’cap’.
• The ATOMhash() computes a hash index for a value. ‘val’ is a direct pointer to the

atom value. Its return value should be an integer between 0 and ’mask’.
• The ATOMcmp() operation computes two atomic values. Its parameters are pointers

to atomic values.
• The ATOMlen() operation computes the byte length for a value. ‘val’ is a direct pointer

to the atom value. Its return value should be an integer between 0 and ’mask’.
• The ATOMdel() operation deletes a var-sized atom from its heap ‘hp’. The integer

byte-index of this value in the heap is pointed to by ‘val src’.

Chapter 11: The Inner Core 200

• The ATOMput() operation inserts an atom ‘src val’ in a BUN at ‘dst pos’. This
involves copying the fixed sized part in the BUN. In case of a var-sized atom, this fixed
sized part is an integer byte-index into a heap of var-sized atoms. The atom is then
also copied into that heap ‘hp’.

• The ATOMfix() and ATOMunfix() operations do bookkeeping on the number of ref-
erences that a GDK application maintains to the atom. In MonetDB, we use this to
count the number of references directly, or through BATs that have columns of these
atoms. The only operator for which this is currently relevant is BAT. The operators
return the POST reference count to the atom. BATs with fixable atoms may not be
stored persistently.

• The ATOMfromstr() parses an atom value from string ‘s’. The memory allocation pol-
icy is the same as in ATOMget(). The return value is the number of parsed characters.

• The ATOMprint() prints an ASCII description of the atom value pointed to by ‘val’
on file descriptor ‘fd’. The return value is the number of parsed characters.

• The ATOMformat() is similar to ATOMprint(). It prints an atom on a newly allocated
string. It must later be freed with GDKfree. The number of characters written is
returned. This is minimally the size of the allocated buffer.

• The ATOMdup() makes a copy of the given atom. The storage needed for this is
allocated and should be removed by the user.

These wrapper functions correspond closely to the interface functions one has to provide
for a user-defined atom. They basically (with exception of ATOMput(), ATOMprint() and
ATOMformat()) just have the atom id parameter prepended to them.

11.5.4 Unique OIDs

oid OIDseed (oid seed);
oid OIDnew (size t inc);

OIDs are special kinds of unsigned integers because the system guarantees uniqueness.
For system simplicity and performance, OIDs are now represented as (signed) integers;
however this is hidden in the system internals and shouldn’t affect semantics.

The OIDnew(N) claims a range of N contiguous unique, unused OIDs, and returns the
starting value of this range. The highest OIDBITS designate site. [DEPRECATED]

11.5.5 Built-in Accelerator Functions

BAT* BAThash (BAT *b, size t masksize)
BAT * BAThashsplit (BAT *b, size t n, int unary)
BAT * BATrangesplit (BAT *b, int n)

The current BAT implementation supports one search accelerator: hashing. The routine
BAThash makes sure that a hash accelerator on the head of the BAT exists. A zero is
returned upon failure to create the supportive structures.

The hash data structures are currently maintained during update operations.

A BAT can be redistributed over n buckets using a hash function with BAThashsplit.
The return value is a list of BAT pointers. Similarly, a range partitioning based is supported.

Chapter 11: The Inner Core 201

11.5.6 Multilevel Storage Modes

We should bring in the compressed mode as the first, maybe built-in, mode. We could than
add for instance HTTP remote storage, SQL storage, and READONLY (cd-rom) storage.

11.6 GDK Utilities

Interfaces for memory management, error handling, thread management and system infor-
mation.

11.6.1 GDK memory management

void* GDKmalloc (size t size)
void* GDKzalloc (size t size)
void* GDKmallocmax (size t size, size t *maxsize, int emergency)
void* GDKrealloc (void* pold, size t size)
void* GDKreallocmax (void* pold, size t size, size t *maxsize, int

emergency)
void GDKfree (void* blk)
str GDKstrdup (str s)
void* GDKvmalloc (size t size, size t *maxsize, int emergency)
void* GDKvmrealloc (void* pold, size t oldsize, size t newsize, size t old-

max, size t *maxsize, int emergency)
void GDKvmfree (void* blk, size t size, size t maxsize)

These utilities are primarily used to maintain control over critical interfaces to the C
library. Moreover, the statistic routines help in identifying performance and bottlenecks in
the current implementation.

Compiled with -DMEMLEAKS the GDK memory management log their activities, and
are checked on inconsistent frees and memory leaks.

11.6.2 GDK error handling

str GDKmessage
bit GDKsilent
int GDKfatal(str msg)
int GDKwarning(str msg)
int GDKerror (str msg)
int GDKgoterrors ()
int GDKsyserror (str msg)
str GDKerrbuf

GDKsetbuf (str buf)

The error handling mechanism is not sophisticated yet. Experience should show if this
mechanism is sufficient. Most routines return a pointer with zero to indicate an error.

The error messages are also copied to standard output unless GDKsilent is set to a
non-zero value. The last error message is kept around in a global variable.

Error messages can also be collected in a user-provided buffer, instead of being echoed
to a stream. This is a thread-specific issue; you want to decide on the error mechanism on a
thread-specific basis. This effect is established with GDKsetbuf. The memory (de)allocation

Chapter 11: The Inner Core 202

of this buffer, that must at least be 1024 chars long, is entirely by the user. A pointer to
this buffer is kept in the pseudo-variable GDKerrbuf. Normally, this is a NULL pointer.

The GDKembedded variable is a property set in the configuration file to indicate that
the kernel is only allowed to run as a single process. This can be used to remove all locking
overhead. The actual state of affairs is maintained in GDKprotected, which is set when
locking is required, e.g. when multiple threads become active.

The kernel maintains a central table of all active threads. They are indexed by their tid.
The structure contains information on the input/output file descriptors, which should be
set before a database operation is started. It ensures that output is delivered to the proper
client. The Thread structure should be ideally made directly accessible to each thread.
This speeds up access to tid and file descriptors.

11.7 Transaction Management

int TMcommit ()
int TMabort ()
int TMsubcommit ()

MonetDB by default offers a global transaction environment. The global transaction
involves all activities on all persistent BATs by all threads. Each global transaction ends
with either TMabort or TMcommit, and immediately starts a new transaction. TMcommit
implements atomic commit to disk on the collection of all persistent BATs. For all persis-
tent BATs, the global commit also flushes the delta status for these BATs (see BATcom-
mit/BATabort). This allows to perform TMabort quickly in memory (without re-reading
all disk images from disk). The collection of which BATs is persistent is also part of the
global transaction state. All BATs that where persistent at the last commit, but were
made transient since then, are made persistent again by TMabort. In other words, BATs
that are deleted, are only physically deleted at TMcommit time. Until that time, rollback
(TMabort) is possible.

Use of TMabort is currently NOT RECOMMENDED due to two bugs:
• TMabort after a failed %TMcommit does not bring us back to the previous committed

state; but to the state at the failed TMcommit.
• At runtime, TMabort does not undo BAT name changes, whereas a cold MonetDB

restart does.

In effect, the problems with TMabort reduce the functionality of the global transac-
tion mechanism to consistent checkpointing at each TMcommit. For many applications,
consistent checkpointingis enough.

Extension modules exist that provide fine grained locking (lock module) and Write Ahead
Logging (sqlserver). Applications that need more fine-grained transactions, should build this
on top of these extension primitives.

TMsubcommit is intended to quickly add or remove BATs from the persistent set. In
both cases, rollback is not necessary, such that the commit protocol can be accelerated. It
comes down to writing a new BBP.dir.

Its parameter is a BAT-of-BATs (in the tail); the persistence status of that BAT is
committed. We assume here that the calling thread has exclusive access to these bats. An

Chapter 11: The Inner Core 203

error is reported if you try to partially commit an already committed persistent BAT (it
needs the rollback mechanism).

11.7.1 Delta Management

BAT * BATcommit (BAT *b)
BAT * BATfakeCommit (BAT *b)
BAT * BATundo (BAT *b)
BAT * BATprev (BAT *b)
BAT * BATalpha (BAT *b)
BAT * BATdelta (BAT *b)

The BAT keeps track of updates with respect to a ’previous state’. Do not confuse
’previous state’ with ’stable’ or ’commited-on-disk’, because these concepts are not always
the same. In particular, they diverge when BATcommit, BATfakecommit, and BATundo
are called explictly, bypassing the normal global TMcommit protocol (some applications
need that flexibility).

BATcommit make the current BAT state the new ’stable state’. This happens inside the
global TMcommit on all persistent BATs previous to writing all bats to persistent storage
using a BBPsync[?].

EXPERT USE ONLY: The routine BATfakeCommit updates the delta information on
BATs and clears the dirty bit. This avoids any copying to disk. Expert usage only, as it
bypasses the global commit protocol, and changes may be lost after quitting or crashing
MonetDB.

BATabort undo-s all changes since the previous state. The global TMabort[?] achieves
a rollback to the previously committed state by doing BATabort on all persistent bats.

BUG: after a failed TMcommit, TMabort does not do anything because TMcommit does
the BATcommits *before* attempting to sync to disk instead of *after& doing this.

The previous state can also be queried. BATprev is a view on the current BAT as it was
in the previous state. BATalpha shows only the BUNs inserted since the previous state,
and BATdelta the deleted buns.

CAVEAT: BATprev, BATalpha and BATdelta only return views if the underlying BATs
are read-only (often not the case when BATs are being updated). Otherwise, copies must
be made anyway.

11.8 BAT Alignment and BAT views

int ALIGNsynced (BAT* b1, BAT* b2)
int ALIGNsync (BAT *b1, BAT *b2)
int ALIGNrelated (BAT *b1, BAT *b2)
int ALIGNsetH ((BAT *dst, BAT *src) \hline
BAT * BATpropcheck (BAT *b, int mode) \hline
BAT* VIEWcreate (BAT *b)
bat VIEWparent (BAT *b)
BAT* VIEWhead (BAT *b)
BAT* VIEWcombine (BAT *b)
BAT* VIEWreset (BAT *b)
BAT* BATmaterialize (BAT *b, size\ t size)

Chapter 11: The Inner Core 204

Alignments of two columns of a BAT means that the system knows whether these two
columns are exactly equal. Relatedness of two BATs means that one pair of columns (either
head or tail) of both BATs is aligned. The first property is checked by ALIGNsynced, the
latter by ALIGNrelated.

The BATpropcheck examines a BAT and tries to set all applicable properties
(key,sorted,align,dense).

All algebraic BAT commands propagate the properties - including alignment properly
on their results.

VIEW BATs are BATs that lend their storage from a parent BAT. They are just a
descriptor that points to the data in this parent BAT. A view is created with VIEWcreate.
The cache id of the parent (if any) is returned by VIEWparent (otherwise it returns 0).

VIEW bats are read-only!!

The VIEWcombine gives a view on a BAT that has two head columns of the parent. The
VIEWhead constructs a BAT view that has the same head column as the parent, but has a
void column with seqbase=nil in the tail. VIEWreset creates a normal BAT with the same
contents as its view parameter (it converts void columns with seqbase!=nil to materialized
oid columns).

The BATmaterialize materializes a VIEW (TODO) or void bat inplace. The size pa-
rameter can be used to hint the new size. This is useful as materialization is usually needed
for updates.

11.9 BAT Iterators

BATloop (BAT *b; BUN p, BUN q)
BATloopDEL (BAT *b; BUN p; BUN q; int dummy)
DELloop (BAT *b; BUN p, BUN q, int dummy)
HASHloop (BAT *b; Hash *h, size t dummy; ptr value)
HASHloop bit (BAT *b; Hash *h, size t idx; bit *value, BUN w)
HASHloop chr (BAT *b; Hash *h, size t idx; char *value, BUN w)
HASHloop bte (BAT *b; Hash *h, size t idx; bte *value, BUN w)
HASHloop sht (BAT *b; Hash *h, size t idx; sht *value, BUN w)
HASHloop bat (BAT *b; Hash *h, size t idx; bat *value, BUN w)
HASHloop ptr (BAT *b; Hash *h, size t idx; ptr *value, BUN w)
HASHloop int (BAT *b; Hash *h, size t idx; int *value, BUN w)
HASHloop oid (BAT *b; Hash *h, size t idx; oid *value, BUN w)
HASHloop wrd (BAT *b; Hash *h, size t idx; wrd *value, BUN w)
HASHloop flt (BAT *b; Hash *h, size t idx; flt *value, BUN w)
HASHloop lng (BAT *b; Hash *h, size t idx; lng *value, BUN w)
HASHloop dbl (BAT *b; Hash *h, size t idx; dbl *value, BUN w)
HASHloop str (BAT *b; Hash *h, size t idx; str value, BUN w)
HASHlooploc (BAT *b; Hash *h, size t idx; ptr value, BUN w)
HASHloopvar (BAT *b; Hash *h, size t idx; ptr value, BUN w)
SORTloop (BAT *b,p,q,tl,th,s)

The BATloop() looks like a function call, but is actually a macro. The following example
gives an indication of how they are to be used:

Chapter 11: The Inner Core 205

void
print_a_bat(BAT *b)
{

BUN p, q;
BATloop(b, p, q)

printf("Element %3d has value %d\n",
(int) BUNhead(b, p), *(int*) BUNtail(b, p));

}

11.9.1 simple sequential scan

The first parameter is a BAT, the p and q are BUN pointers, where p is the iteration
variable.

#define BATloop(r, p, q) \
for(q = BUNlast(r), p = BUNfirst(r);p < q; p = BUNnext(r, p))
#define BATloopFast(r, p, q, x) \
for(q = BUNlast(r), x = BUNsize(r), p = BUNfirst(r); p < q; p += x)

11.9.2 batloop where the current element can be deleted/updated

Normally it is strictly forbidden to update the BAT over which is being iterated, or delete
the current element. This can only be done with the specialized batloop below. When doing
a delete, do not forget to update the current pointer with a p = BUNdelete(b,p) (the delete
may modify the current pointer p). After the delete/update has taken place, the pointer p
is in an inconsistent state till the next iteration of the batloop starts.

#define BATloopDEL(r, p, q, x) \
for(p = BUNfirst(r), q = BUNlast(r), x = BUNsize(r); p < q; \

q=MIN(q,BUNlast(r)), p += x)

11.9.3 sequential scan over deleted BUNs

Stable BUNS that were deleted, are conserved to transaction end. You may inspect these
data items. Again, the b is a BAT, p and q are BUNs, where p is the iteration variable.

#define DELloop(b, p, q, x) \
for (q = (b)->batFirst, p = (b)->batDeleted, x=BUNsize(b); p < q; p += x)

11.9.4 hash-table supported loop over BUNs

The first parameter ‘b’ is a BAT, the second (‘h’) should point to ‘b->hhash’, and ‘v’ a
pointer to an atomic value (corresponding to the head column of ‘b’). The ’hb’ is an integer
index, pointing out the ‘hb’-th BUN. You should translate this index with BUNptr(b,hb) to
obtain a BUN from the iteration variable.

#define GDK_STREQ(l,r) (*(char*) (l) == *(char*) (r) && !strcmp(l,r))

#define HASHloop(b, h, hb, v) \
for (hb = h->hash[HASHprobe(h, v)]; hb != HASH_MAX; hb = h->link[hb]) \

Chapter 11: The Inner Core 206

if (ATOMcmp(h->type, v, BUNhead(b, BUNptr(b, hb))) == 0)
#define HASHloop_str(b, h, hb, v) \
for (hb = h->hash[strHash(v)&h->mask]; hb != HASH_MAX; hb = h->link[hb])
\
if (GDK_STREQ(v, BUNhvar(b, BUNptr(b, hb))))

For string search, we can optimize if the string heap has eliminated all doubles. This is
the case when not too many different strings are stored in the heap. You can check this
with the macro strElimDoubles() If so, we can just compare integer index numbers instead
of strings:

#define HASHloop_fstr(b, h, hb, idx, v) \
for (hb = h->hash[strHash(v)&h->mask], idx = strLocate((b)->hheap,v); \

hb != HASH_MAX; hb = h->link[hb]) \
if (*(var_t*) BUNhloc(b, BUNptr(b, hb)) == idx)

The following example shows how the hashloop is used:

void
print_books(BAT *author_books, str author)
{

BAT *b = author_books;
size_t i;

printf("%s\n==================\n", author);
HASHloop(b, (b)->hhash, i, author)

printf("%s\n", ((str) BUNtail(b, BUNptr(b,i)));
}

Note that for optimization purposes, we could have used a HASHloop str instead, and
also a BUNtvar instead of a BUNtail (since we know the tail-type of author books is string,
hence variable-sized). However, this would make the code less general.

11.9.5 specialized hashloops

HASHloops come in various flavors, from the general HASHloop, as above, to specialized
versions (for speed) where the type is known (e.g. HASHloop int), or the fact that the atom
is fixed-sized (HASHlooploc) or variable-sized (HASHloopvar). These hashloops have one
extra parameter, a BUN pointer ’w’ (again for speed) which already points at the current
BUN (i.e. w == BUNptr(b,hb)).

#define HASHlooploc(b, h, hb, v, w) \
for (hb = h->hash[HASHprobe(h, v)]; hb != HASH_MAX; hb = h->link[hb]) \
if ((w=BUNptr(b, hb)) != NULL && ATOMcmp(h->type, v, BUNhloc(b, w)) == 0)
#define HASHloopvar(b, h, hb, v, w) \
for (hb = h->hash[HASHprobe(h, v)]; hb != HASH_MAX; hb = h->link[hb]) \
if ((w=BUNptr(b, hb)) != NULL && ATOMcmp(h->type, v, BUNhvar(b, w)) == 0)

11.9.6 loop over a BAT with ordered tail

Here we loop over a BAT with an ordered tail column (see for instance BATsort). Again, ’p’
and ’q’ are iteration variables, where ’p’ points at the current BUN. ’tl’ and ’th’ are pointers
to atom corresponding to the minimum (included) and maximum (included) bound in the

Chapter 11: The Inner Core 207

selected range of BUNs. A nil-value means that there is no bound. The ’s’ finally is an
integer denoting the bunsize, used for speed.

#define SORTloop(b,p,q,tl,th,s) \
if (!(BATtordered(b)&1)) GDKerror("SORTloop: BAT not sorted.\n"); \
else for (p = (ATOMcmp((b)->ttype,tl,ATOMnilptr((b)->ttype))? \

SORTfndfirst(b,tl):BUNfirst(b)), \
q = (ATOMcmp((b)->ttype,th,ATOMnilptr((b)->ttype))? \

SORTfndlast(b,th):BUNlast(b)), \
s = BUNsize(b); p < q; p += s)

/* OIDDEPEND */
#if SIZEOF_OID == SIZEOF_INT
#define SORTfnd_oid(b,v) SORTfnd_int(b,v)
#define SORTfndfirst_oid(b,v) SORTfndfirst_int(b,v)
#define SORTfndlast_oid(b,v) SORTfndlast_int(b,v)
#define SORTloop_oid(b,p,q,tl,th,s) SORTloop_int(b,p,q,tl,th,s)
#else
#define SORTfnd_oid(b,v) SORTfnd_lng(b,v)
#define SORTfndfirst_oid(b,v) SORTfndfirst_lng(b,v)
#define SORTfndlast_oid(b,v) SORTfndlast_lng(b,v)
#define SORTloop_oid(b,p,q,tl,th,s) SORTloop_lng(b,p,q,tl,th,s)
#endif
#if SIZEOF_WRD == SIZEOF_INT
#define SORTfnd_wrd(b,v) SORTfnd_int(b,v)
#define SORTfndfirst_wrd(b,v) SORTfndfirst_int(b,v)
#define SORTfndlast_wrd(b,v) SORTfndlast_int(b,v)
#define SORTloop_wrd(b,p,q,tl,th,s) SORTloop_int(b,p,q,tl,th,s)
#else
#define SORTfnd_wrd(b,v) SORTfnd_lng(b,v)
#define SORTfndfirst_wrd(b,v) SORTfndfirst_lng(b,v)
#define SORTfndlast_wrd(b,v) SORTfndlast_lng(b,v)
#define SORTloop_wrd(b,p,q,tl,th,s) SORTloop_lng(b,p,q,tl,th,s)
#endif
#define SORTloop_bit(b,p,q,tl,th,s) SORTloop_chr(b,p,q,tl,th,s)

11.10 Common BAT Operations

Much used, but not necessarily kernel-operations on BATs.

11.10.1 BAT aggregates

BAT* BAThistogram(BAT *b)
BAT* BATsample(BAT* b,size t n)

The routine BAThistogram produces a new BAT with a frequency distribution of the
tail of its operand.

The routine BATsample returns a random sample on n BUNs of a BAT.

Chapter 11: The Inner Core 208

For each BAT we maintain its dimensions as separately accessible properties. They can
be used to improve query processing at higher levels.

11.10.2 Alignment transformations

Some classes of algebraic operators transform a sequence in an input BAT always in the
same way in the output result. An example are the () function (including histogram(b),
which is identical to (b.reverse)). That is to say, if synced(b2,b2) => synced((b1),(b2))

Another example is b.fetch(position-bat). If synced(b2,b2) and the same position-bat is
fetched with, the results will again be synced. This can be mimicked by transforming the
alignment-id of the input BAT with a one-way function onto the result.

We use output->halign = NOID AGGR(input->halign) for the output = (input) case,
and output->align = NOID MULT(input1->align,input2->halign) for the fetch.

11.10.3 BAT relational operators

BAT * BATjoin (BAT *l, BAT *r, size\ t estimate)
BAT * BATouterjoin (BAT *l, BAT *r, size\ t estimate)
BAT * BATbandjoin (BAT *l, BAT *r, ptr c1, ptr c2)
BAT * BATthetajoin (BAT *l, BAT *r, int mode, size\ t estimate)
BAT * BATsemijoin (BAT *l, BAT *r)
BAT * BATselect (BAT *b, ptr tl, ptr th)
BAT * BATfragment (BAT *b, ptr l, ptr h, ptr L, ptr H)
\hline
BAT * BATsunique (BAT *b)
BAT * BATkunique (BAT *b)
BAT * BATsunion (BAT *b, BAT *c)
BAT * BATkunion (BAT *b, BAT *c)
BAT * BATsintersect (BAT *b, BAT *c)
BAT * BATkintersect (BAT *b, BAT *c)
BAT * BATsdiff (BAT *b, BAT *c)
BAT * BATkdiff (BAT *b, BAT *c)

The BAT library comes with a full-fledged collection of relational operators. The two
selection operators BATselect and BATfragment produce a partial copy of the BAT. The
former performs a search on the tail; the latter considers both dimensions. The BATse-
lect operation takes two inclusive ranges as search arguments. Interpretation of a NULL
argument depends on the position, i.e. a domain lower or upper bound.

The operation BATsort sorts the BAT on the header and produces a new BAT. A side
effect is the clustering of the BAT store on the sort key.

The BATjoin over R[A, B] and S[C, D] performs an equi-join over B and C. It results
in a BAT over A and D. The BATouterjoin implements a left outerjoin over the BATs
involved. The BATbandjoin produces the associations [A, D] such that S.C-c1 <= R.b <=
S.C + c2. The special case c1 = 0 and c2 = infinite leads to a thetajoin. The BATsemijoin
over R[A, B] and S[C, D] produces the subset of R[A, B] that satisfies the semijoin over A
and C.

The full-materialization policy intermediate results in MonetDB means that a join
can produce an arbitrarily large result and choke the system. The Data Distilleries

Chapter 11: The Inner Core 209

tool therefore first computes the join result size before the actual join (better waste
time than crash the server). To exploit that perfect result size knowledge, an result-size
estimate parameter was added to all equi-join implementations. TODO: add this for
semijoin/select/unique/diff/intersect

The routine BATsunique considers both dimensions in the double elimination it per-
forms; it produces a set. The routine BATtunique considers only the head column, and
produces a unique head column.

BATs that satisfy the set property can be further processed with the set operations
BATsunion, BATsintersect, and BATsdiff. The same operations are also available in ver-
sions that only look at the head column:BATkunion, BATkdiff, and BATkintersect (which
shares its implementation with BATsemijoin).

The kernel code modules are encapsulated with MAL wrappers. A synopsis of their
functionality is described below. The signature details can be found in the appendix.

11.11 Aggregates Module

This module contains some efficient aggregate functions that compute their result in one
scan, rather than in the iterative manner of the generic MIL aggregrate implementations.

The implementation code is derived from the original ’aggr’ module. It uses a complete
type-specific code expansion to avoid any type-checking in the inner-most loops. Where
feasible, it replaced (expansive) hash-lookup by significantly cheaper positional void-lookups
(if the head-column of the group-extend BAT ("e") is "void") or at least by (also positional)
array lookups (in case the group-ids span a reasonably small range);

In addition to the 2-parameter

11.12 Timers and Timed Interrupts

This module handles various signaling/timer functionalities. The Monet interface supports
two timer commands: alarm and sleep. Their argument is the number of seconds to wait
before the timer goes off. The sleep command blocks till the alarm goes off. The alarm
command continues directly, executes off a MIL string when it goes off. The parameterless
routines time and ctime provide access to the cpu clock.They return an integer and string,
respectively.

11.13 BAT Algebra

This modules contains the most common algebraic BAT manipulation commands. We call
them algebra, because all operations take values as parameters, and produce new result
values, but do not modify their parameters. Unlike the previous Monet versions, we reduce
the number of functions returning a BAT reference. This was previously needed to simplify
recursive bat-expression and manage reference counts. In the current version we return only
a BAT identifier when a new bat is being created.

All parameters to the modules are passed by reference. In particular, this means that
string values are passed to the module layer as (str *) and we have to de-reference them
before entering the gdk library. This calls for knowlegde on the underlying BAT typs‘s

Chapter 11: The Inner Core 210

11.14 Basic array support

The array support library constructs the index arrays essential for the Relational Algebra
Model language. The grid filler operation assumes that there is enough space. The shift
variant multiplies all elements with a constant factor. It is a recurring operation for the
RAM front-end and will save an additional copying.

The optimization is captured in a contraction macro.

11.15 Binary Association Tables

This module contains the commands and patterns to manage Binary Association Tables
(BATs). The relational operations you can execute on BATs have the form of a neat
algebra, described in algebra.mx

But a database system needs more that just this algebra, since often it is crucial to do
table-updates (this would not be permitted in a strict algebra).

All commands needed for BAT updates, property management, basic I/O, persistence,
and storage options can be found in this module.

All parameters to the modules are passed by reference. In particular, this means that
string values are passed to the module layer as (str *) and we have to de-reference them
before entering the gdk library. (Actual a design error in gdk to differentiate passing int/str)
This calls for knowledge on the underlying BAT types‘s

11.16 BAT calculator

Many applications require extension of the basic calculator and mathematic functions to
work on BAT arguments. Although the MAL multiplex optimizer contains a command
(’optimizer.multiplex’) to generate the necessary code, it is often much more efficient to use
one of the dedidacted batcalc functions introduced below.

The operators supported are limited to the built-in fixed length atoms, because they
permit ease of storage of the operation result. Variable sized atoms, especially user de-
fined, may require more administrative activities. Furthermore, the operands involved are
assumed to be aligned to assure the fastest possible join evaluation.

Optimal processing performance is further obtained when the operators can work as
’accumulators’, for then we do not pay the price of space allocation for a new intermediate.
It may imply a BATcopy before the accummulator function is being called. A new BAT is
of course created when the result of a function does not fit the accumulator.

The implementation does not take into account possible overflows caused by the oper-
ators. However, the operators respect the NIL semantics and division by zero produces a
NIL.

In addition to arithmetic and comparison operators, casting and mathematical functions
are directly supported.

11.17 NULL semantics

The batcalc arithmetic is already constraint to BATs of equal size. Another improvement
can be obtained when we do not have to check for NULLs in each and every basic operation
+,-,/,* and comparisons. This variant can be obtained using a compile time flag (NULLTST)

Chapter 11: The Inner Core 211

for the time being. If it turns out to be effective, we will derive a new version of batcalc.
Experiments show that ignoring the NULLS saves about 15\% for larger instructions.

11.18 BAT Coercion Routines

The coercion routines over BATs can not easily be speed up using an accumulator approach,
because they often require different storage space. Nevertheless, the implementation pro-
vided here are much faster compared to the Version 4.* implementation.

The coercion routines are build for speed. They are not protected against overflow.

11.19 BAT if-then-else multiplex expressions.

The assembled code for IF-THEN-ELSE multiplex operations. Again we assume that the
BAT arguments are aligned.

11.20 Color multiplexes

[TODO: property propagations and general testing] The collection of routines provided here
are map operations for the color string primitives.

In line with the batcalc module, we assume that if two bat operands are provided that
they are already aligned on the head. Moreover, the head of the BATs are limited to :oid,
which can be cheaply realized using the GRPsplit operation.

11.21 String multiplexes

[TODO: property propagations] The collection of routines provided here are map operations
for the atom string primitives.

In line with the batcalc module, we assume that if two bat operands are provided that
they are already aligned on the head. Moreover, the head of the BATs are limited to :void,
which can be cheaply realized using the GRPsplit operation.

11.22 BAT math calculator

11.23 The math module

This module contains the math commands. The implementation is very simply, the c math
library functions are called. See for documentation the ANSI-C/POSIX manuals of the
equaly named functions.

NOTE: the operand itself is being modified, rather than that we produce a new BAT.
This to save the expensive copying.

11.24 Time/Date multiplexes

[TODO: property propagations] The collection of routines provided here are map operations
for the atom time and date primitives.

In line with the batcalc module, we assume that if two bat operands are provided that
they are already aligned on the head. Moreover, the head of the BATs are limited to :void,
which can be cheaply realized using the GRPsplit operation.

Chapter 11: The Inner Core 212

11.25 Basic arithmetic

This module is an extended version of the V4 arithmetic module. It implements the arith-
metic operations on the built-in types, chr, bte, sht, int, flt, dbl and lng. All combinations
are implemented. Limited combinations are implemented for bit, oid and str.

[binary operators]
The implemented operators are first of all all comparison that return a
TRUE/FALSE value (bit values), i.e. <=, <, ==, !=, >=, and >=.
The module also implements the operators +, -, * and /. The rules for the
return types operators is as follows. If one of the input types is a floating point
the result will be a floating point. The largest type of the input types is taken.
The max and min functions return the maximum and minimum of the two
input parameters.

[unary operators]
This module also implements the unary abs() function, which calculates the
absolute value of the given input parameter, as well as the - unary operator.
The inv unary operation calculates the inverse of the input value. An error
message is given when the input value is zero.

[bitwise operators]
For integers there are some additional operations. The \% operator implements
the congruent modulo operation. The << and >> are the left and right bit
shift. The or, and, xor and not for integers are implemented as bitwise boolean
operations.

[boolean operators]
The or, and, xor and not for the bit atomic type in MIL (this corresponds to
what is normally called boolean) are implemented as the logic operations.

[random numbers]
This module also contains the rand and srand functions. The srand() function
initializes the random number generator using a seed value. The subsequent
calls to rand() are pseudo random numbers (with the same seed the sequence
can be repeated).

The general interpretation for the NIL value is "unknown". This semantics mean that
any operation that receives at least one NIL value, will produce a NIL value in the output
for sure.

The only exception to this rule are the "==" and "!=" equality test routines (it would
otherwise become rather difficult to test whether a value is nil).

11.26 Performance Counters

This is a memory/cpu performance measurement tool for the following processor (families).
• MIPS R10000/R12000 (IP27)
• Sun UltraSparcI/II (sun4u)
• Intel Pentium (i586/P5)
• Intel PentiumPro/PentiumII/PentiumIII/Celeron (i686/P6)

Chapter 11: The Inner Core 213

• AMD Athlon (i686/K7)

• Intel Itanium/Itanium2 (ia64)

It uses

• libperfmon libperfex (IRIX) for R10000/R12000,

• (Solaris <= 7) by Richard Enbody, libcpc (Solaris >= 8) for UltraSparcI/II,

• libpperf (Linux-i?86 <= 2.2), by M. Patrick Goda and Michael S. Warren,

• libperfctr (Linux-i?86 >= 2.4), by M. Pettersson for Pentiums \& Athlons.

• libpfm (Linux-ia64 >= 2.4), by HP for Itanium[2].

Module counters provides similar interface and facilities as Peter’s R10000 perfex module,
but it offers no multiplexing of several events; only two events can be monitored at a
time. On non-Linux/x86, non-Solaris/UltraSparc, and non-IRIX/R1x000 systems, only the
elapsed time in microseconds is measured.

11.27 The group module

This module contains the primitives to construct, derive, and perform statistical operations
on BATs representing groups. The default scheme in Monet is to assume the head to
represent the group identifier and the tail an element in the group.

Groups play an important role in datamining, where they are used to construct cross-
tables. Such cross tables over a single BAT are already supported by the histogram function.
This module provides extensions to support identification of groups in a (multi-)dimensional
space.

The module implementation has a long history. The first implementation provided sev-
eral alternatives to produce/derive the grouping. A more complete (and complex) scheme
was derived during its extensive use in the context of the Data Distilleries product. The
current implementation is partly a cleanup of this code-base, but also enables provides bet-
ter access to the intermediate structures produced in the process, i.e. the histogram and
the sub-group mapping. They can be used for various optimization schemes at the MAL
level.

The prime limitation of the current implementation is that an underlying database of
BATs is assumed. This enables representation of each group using an oid, and the value
representation of the group can be accordingly be retrieved easily. An optimized implemen-
tation in which we use positional integer id’s (as embodied by Monet’s void type) is also
available.

This limitation on (v)oid-headers is marginal. The primitive GRPsplit produces for any
BAT two copies with both a (v)oid header.

11.27.1 Algorithms

There are several approaches to build a cross table. The one chosen here is aimed at
incremental construction, such that re-use of intermediates becomes possible. Starting with
the first dimension, a BAT is derived to represent the various groups, called a GRP BAT
or cross-table BAT.

Chapter 11: The Inner Core 214

11.27.2 Cross Table (GRP)

A cross table is an <oid,oid> BAT where the first (head) denotes a tuple in the cross table
and the second (tail) marks all identical lists. The tail-oids contain group identifiers; that
is, this value is equal iff two tuples belong to the same group. The group identifiers are
chosen from the domain of the tuple-identifiers. This simplifies getting back to the original
tuples, when talking about a group. If the tuple-oid of ’John’ is chosen as a group-id, you
might view this as saying that each member of the group is ’like John’ with respect to the
grouping-criterion.

Successively the subgroups can be identified by modifying the GRP BAT or to derive a
new GRP BAT for the subgroups. After all groups have been identified this way, a BAT
histogram operation can be used to obtain the counts of each data cube. Other aggregation
operations using the MIL set aggregate construct (bat) can be used as well; note for instance
that histogram == (b.reverse()).

The Monet interface module specification is shown below. Ideally we should defined
stronger type constraints, e.g. command group.new(attr:bat[,:any 1]

The group macro is split along three dimensions:
[type:] Type specific implementation for selecting the right hash function and

data size etc.;
[clustered:] The select the appropriate algorithm, i.e., with or without taking ad-

vantage of an order of values in the parent groups;
[physical
properties:]

Values , choosing between a fixed predefined and a custom hashmask.
Custom allows the user to determine the size of the hashmask (and
indirectly the estimated size of the result). The hashmask is $2^n -
1$ where n is given by the user, or 1023 otherwise, and the derived
result size is $4 \cdot 2^n$.

Further research should point out whether fitting a simple statistical model (possibly a
simple mixture model) can help choose these parameters automatically; the current idea
is that the user (which could be a domain-specific extension of the higher-level language)
knows the properties of the data, especially for IR in which the standard grouping settings
differ significantly from the original datamining application.

11.28 Lightweight Lock Module

This module provides simple SMP lock and thread functionality as already present in the
MonetDB system.

This module provides simple SMP lock and thread functionality as already present in
the MonetDB system.

11.29 The Transaction Logger

In the philosophy of MonetDB, transaction management overhead should only be paid when
necessary. Transaction management is for this purpose implemented as a separate module
and applications are required to obey the transaction policy, e.g. obtaining/releasing locks.

This module is designed to support efficient logging of the SQL database. Once loaded,
the SQL compiler will insert the proper calls at transaction commit to include the changes
in the log file.

Chapter 11: The Inner Core 215

The logger uses a directory to store its log files. One master log file stores information
about the version of the logger and the transaction log files. This file is a simple ascii file
with the following format: 6DIGIT-VERSION\n[log file number \n]*]* The transaction log
files have a binary format, which stores fixed size logformat headers (flag,nr,bid), where the
flag is the type of update logged. The nr field indicates how many changes there were (in
case of inserts/deletes). The bid stores the bid identifier.

The key decision to be made by the user is the location of the log file. Ideally, it should
be stored in fail-safe environment, or at least the log and databases should be on separate
disk columns.

This file system may reside on the same hardware as the database server and therefore
the writes are done to the same disk, but could also reside on another system and then the
changes are flushed through the network. The logger works under the assumption that it
is called to safeguard updates on the database when it has an exclusive lock on the latest
version. This lock should be guaranteed by the calling transaction manager first.

Finding the updates applied to a BAT is relatively easy, because each BAT contains a
delta structure. On commit these changes are written to the log file and the delta manage-
ment is reset. Since each commit is written to the same log file, the beginning and end are
marked by a log identifier.

A server restart should only (re)process blocks which are completely written to disk. A
log replay therefore ends in a commit or abort on the changed bats. Once all logs have been
read, the changes to the bats are made persistent, i.e. a bbp sub-commit is done.

11.30 Multi-Attribute Equi-Join

11.31 Priority queues

This module includes functions for accessing and updating a pqueue. A pqueue is an
(oid,any) bat. The tail is used as a comparison key. The first element of the pqueue is the
smallest one in a min-pqueue or the largest one in a max-pqueue. Each element is larger
than (smaller than) or equal to its parent which is defined by (position/2) if position is odd
or (position-1)/2 if position is even (positions are from 0 to n-1). The head of the bat is
used to keep track of the object-ids which are organized in the heap with respect to their
values (tail column).

11.32 System state information

This document introduces a series of bats and operations that provide access to information
stored within the Monet Version 5 internal data structures. In all cases, pseudo BAT
operation returns a transient BAT that should be garbage collected after being used.

The main performance drain would be to use a pseudo BAT directly to successively
access it components. This can be avoided by first assigning the pseudo BAT to a variable.

11.33 Unix standard library calls

The unix module is currently of rather limited size. It should include only those facilities
that are UNIX specific, i.e. not portable to other platforms. Similar modules may be
defined for Windows platforms.

Chapter 12: SQL/XML 216

12 SQL/XML

This section is under development

The SQL/XML standard defines the mechanisms to produce XML formatted results from
relational queries and to import relational data from XML documents. The SQL/XML 2003
definition and its enhancements in SQL/XML 2005 are the frame of reference.

The implementation in MonetDB/SQL is initially geared at providing the basic func-
tionality for publishing XML and simple querying. A more complete and optimized imple-
mentation of XQuery is already available with MonetDB/XQuery. However, data between
the two systems is not shared. They are managed by a different server implementation.

SQL/XML introduces a new datatype xml. It can be used as a column type in table,
view definitions, parameters, and variables. The datatype tells the system that values are
properly structured XML objects.

The SQL/XML implementation uses the string type as the carrier for XML values and
relies on the widely available library libxml2 for additional functionality. It is a poor man’s
approach compared to MonetDB/XQuery.

12.1 XML Import

XML data can be inserted into a database column using any of the available APIs. A single
document is added to a XML column using the blob operation file().

insert into dossier(id,doc) values(20070831, file("/tmp/letter"));

Often an XML document contains a heterogenous collection of objects, which should
be broken into pieces before they are stored in the database. There are many ways to
shred a document and often an application specific front-end application is needed. How-
ever, MonetDB SQL/XML provides a few simple operations to cope with the majority of
situations.

copy into database from ’/tmp/jacktheripper.xml’;
copy into victim(name,hair) from ’/tmp/jacktheripper.xml’
delimiter ’victim(name,hair)’

The first statements reads the XML document and breaks it into a series of relational
tables with foreign key references. It results in a structured object representation. A XML
view named after the top level element is automatically defined to rebuild the original
document.

The second example performs a top-down parse of the XML document. Within every
victim element it extracts the sub-trees named name and hair. This scheme is equivalent
to using XPath expressions victim[//name,//hair].

12.2 XML Publishing

The XML publishing functions are designed to construct XML values from data stored in
the database. They can be used anywhere a string value is allowed.

Chapter 12: SQL/XML 217

� �
XML_value_expression : XML_primary

XML_primary : value expression primary

| XML_value_function

XML_value function : XML_comment

| XML_concatenation

| XML_element

| XML_forest

| XML_parse

| XML_serialize

| XML_PI

XML_comment : XMLCOMMENT ’(’ <string_value_expression> ’)’

XML_concatenation : XMLCONCAT ’(’ XML_value_expression

{ ’,’ XML_value_expression }... ’)’

XML_element : XMLELEMENT ’(’ NAME identifier

[’,’ XML_namespace_declaration] [’,’ XML_attributes]

[{ ’,’ XML_element_content }... [OPTION XML_content_option]

[XML_returning_clause] ’)’

XML_attributes : XMLATTRIBUTES ’(’ XML_attribute_list ’)’

XML_attribute_list : XML_attribute [{ ’,’ XML_attribute }...]

XML_attribute : value_expression [AS identifier]

XML_content_option : NULL ON NULL

| EMPTY ON NULL

| ABSENT ON NULL

| NIL ON NULL

| NIL ON NO CONTENT

XML_element_content : value_expression

XML_returning_clause :

RETURNING { CONTENT | SEQUENCE }

XML_forest : XMLFOREST ’(’ [XML_namespace_declaration> ’,’]

forest_element list ’)’

forest_element list : forest_element [{ ’,’ forest_element }...]

forest_element : forest_element_value [AS identifier]

forest_element value : value_expression

XML_aggregate : XMLAGG ’(’ XML_value_expression

[ORDER BY sort_specification_list]

[XML_returning_clause] ’)’

XML_PI : XMLPI ’(’ NAME identifier

[’,’ string_value_expression] ’)’

XML_parse : XMLPARSE ’(’ document_or_content_string_value_expression

[XML_whitespace_option] ’)’

XML_whitespace_option : { PRESERVE | STRIP } WHITESPACE

XML_serialize:

XMLSERIALIZE ’(’ {DOCUMENT | CONTENT} value AS data_type

[VERSION string_literal]

[ENCODING SQL_language_identifier]

[[INCLUDING | EXCLUDING] XMLDECLARATIONS] ’)’

XML_document predicate : XML_value_expression IS [NOT] DOCUMENT
 	

Chapter 12: SQL/XML 218

The XML table construct provides a mechanism to extract a table from an XML docu-
ment using simple path expression to the elements of interest.� �
XML_iterate : XMLITERATE ’(’ XML_value_expression ’)’

XML_table : XMLTABLE ’(’

[XML_namespace_declaration ’,’]

XML_table_row_pattern

[XML_table_argument_list]

COLUMNS XML_table_column_definitions ’)’

XML_table_row_pattern :

character_string_literal

XML_table_argument_list :

PASSING XML_table_argument_passing_mechanism

XML_query_argument

[{ ’,’ XML_query_argument }...]

XML_table_argument_passing mechanism : XML_passing_mechanism

XML_table_column_definitions :

XML_table_column_definition

[{ ’,’ XML_table_column_definition }...]

XML_table_column_definition_:

XML_table_ordinality_column_definition

| XML_table_regular_column_definition

XML_table_ordinality_column_definition :

column_name FOR ORDINALITY

XML_table_regular_column_definition :

column_name_data_type [XML_passing_mechanism]

[default_clause]

[PATH XML_table_column_pattern]

XML_table_column_pattern : character_string_literal
 	

Declare one or more XML namespaces and the encoding to use for binary strings.

Chapter 12: SQL/XML 219

� �
XML_lexically_scoped_options :

XML_lexically_scoped _option [’,’ XML_lexically_scoped_option]

XML_lexically_ scoped_option : XML_namespace_declaration

| XML_binary_encoding

XML_namespace_declaration :

XMLNAMESPACES ’(’ XML_namespace_declaration item

[{ ’,’ XML_namespace_declaration_item }...] ’)’

XML_namespace_declaration_item :

XML_regular_namespace_declaration_item

| XML_default_namespace_declaration_item

XML_namespace_prefix :

identifier

XML_namespace_URI :

character_string_literal

XML_regular_namespace_declaration_item :

XML_namespace URI AS XML_namespace_prefix

XML_default_namespace_declaration_item :

DEFAULT XML_namespace_URI

| NO DEFAULT

XML_binary_encoding :

XMLBINARY [USING] { BASE64 | HEX }
 	

12.3 XPath and XQuery

The SQL/XML module aims to support XQuery through a well-defined (and narrow) in-
terface.

It relies on linkage of the libxml2 library to explore the rich world of XPath processing.

12.4 XML Schema

Indicate a registered XML Schema, and (optionally) an XML namespace of that registered
XML Schema, and (optionally) a global element declaration schema component of that
registered XML Schema.

Chapter 12: SQL/XML 220

� �
XML_valid_according_to_clause:

ACCORDING_TO_XMLSCHEMA_XML_valid_according_to_what

[_XML_valid_element_clause_]

XML_valid_according_to_what:

XML_valid_according_to_URI

|_XML_valid_according_to_identifier

XML_valid_according_to_URI:

URI_XML_valid_target_namespace_URI_[_<XML_valid_schema_location>_]

|_NO_NAMESPACE_[_XML_valid_schema_location_]

XML_valid_target_namespace_URI: XML_URI

XML_URI: character_string_literal

XML_valid_schema_location:

LOCATION_XML_valid_schema_location_URI

XML_valid_schema_location_URI: XML_URI

XML_valid_according_to_identifier:

ID_registered_XML_Schema_name

XML_valid_element_clause:

XML_valid_element_name_specification

|_XML_valid_element_namespace_specification

[_XML_valid_element_name_specification_]

XML_valid_element_name_specification:

ELEMENT_XML_valid_element_name

XML_valid_element_namespace_specification:

NO NAMESPACE

| NAMESPACE <XML valid element namespace URI>
 	
� �
XML_character_string_serialization:

XMLSERIALIZE ’(’ [document_or_content]

XML_value_expression_AS_data_type

[XML_serialize_version]

[XML_declaration_option] ’)’

XML_declaration_option:

INCLUDING XMLDECLARATION

|_EXCLUDING XMLDECLARATION

document_or_content: DOCUMENT | CONTENT

XML_serialize_version:

VERSION character_string_literal

blob_value_function:

|_XML_binary_string_serialization

XML_binary_string_serialization:

XMLSERIALIZE’(’ [_document_or_content]

XML_value_expression_AS_data_type

[ENCODING_XML_encoding_specification]

[XML_serialize_version]

[XML_declaration_option] right_paren

XML_encoding_specification:

XML_encoding_name

XML_encoding_name:

SQL_language_identifier
 	
Global variables are used to control choices.� �

SET XML OPTION { DOCUMENT | CONTENT };
 	

Chapter 12: SQL/XML 221

12.4.1 Spatial support

This section is under development
MonetDB/SQL comes with an interface to the Simple Feature Specification of OpenGIS

which opens the route to develop GIS applications
The MonetDB/SQL/GIS module supports all objects and functions specified in the OGC

"Simple Features for SQL" specification. Spatial objects can, however, for the time being
only expressed in the Well-Known Text (WKT) format. WKT includes information about
the type of the object and the object’s coordinates.

12.4.2 Get Going

We assume you have an sql client connected to a MonetDB server with the spatial extension
being loaded. How to do this is described in the section ’Installation’ below.

An illustrative example script is given below. It creates and populates a ’forest’ table
and a ’buildings’ table followed by a spatial query in this fictive landscape.
CREATE TABLE forests(id INT,name TEXT,shape MULTIPOLYGON);
CREATE TABLE buildings(id INT,name TEXT,location POINT,outline POLYGON);

INSERT INTO forests VALUES(109, ’Green Forest’,
’MULTIPOLYGON(((28 26,28 0,84 0,84 42,28 26), (52 18,66 23,73 9,48 6,52 18)), ((59 18,67 18,67 13,59 13,59 18)))’);

INSERT INTO buildings VALUES(113, ’123 Main Street’,
’POINT(52 30)’,
’POLYGON((50 31, 54 31, 54 29, 50 29, 50 31))’);

INSERT INTO buildings VALUES(114, ’215 Main Street’,
’POINT(64 33)’,
’POLYGON((66 34, 62 34, 62 32, 66 32, 66 34))’);

SELECT forests.name,buildings.name
FROM forests,buildings
WHERE forests.name = ’Green Forest’ and

Overlaps(forests.shape, buildings.outline) = true;

12.4.3 Acceleration Spatial Operations

There are no special accelerators to speed up access to Spatial Objects yet. However, we can
use the Minimum Bounding Rectangle (mbr) datatype to accelerate operations considerably.
This requires a small query rewrite. In the example above the performance of the query
can be improved in the following manner:
ALTER TABLE forests ADD bbox mbr;
UPDATE forests SET bbox = mbr(shape);
ALTER TABLE buildings ADD bbox mbr;
UPDATE forests SET bbox = mbr(outline);

SELECT forests.name,buildings.name
FROM forests,buildings
WHERE forests.name = ’Green Forest’ AND

Chapter 12: SQL/XML 222

mbroverlaps(forests.bbox,buildings.bbox) = TRUE AND
Overlaps(forests.shape, buildings.outline) = TRUE;

In this way the mbr operation acts as a filter. Upon request, and availabilty of resources,
we will develop MAL optimizers to automate this process.

12.4.4 Installation

The GIS functionality is packaged as a separate MonetDB module called geom. It requires
installation of MonetDB/SQL version 2.20 and up.

To benefit from the geometry functionality you first have to download and install GEOS
from http://geos.refractions.net/. It is a well-known and sound library to built upon.

The next step is to check out the MonetDB/SQL geom module from our Sourceforge
location and install it following the guidelines for MonetDB/SQL.

Once the geom module has been installed you can start the MonetDB/SQL server with
geometry support using the following command:
mserver5 --dbinit="include geom;include sql;sql.start();"

Now on a client run the geom initialization script once:
mclient -lsq < [PATH]/src/sql/geom.sql

[NIELS/WILKO This should be simplified. Can’t we make it part of the sql startup
scripts] Please note that running this script changes the database in such a way that from
now on the server should always be started with the geom module included.

How about the binary installations? Can we prepackage the stuff? or at least make sure
that the SQL interface is accepted, even if when geos functions can not be bound.

12.4.5 Bulk loading

The MonetDB distribution includes the program ’shp2monetdb’ to convert a shapefile into
SQL insert statements. This is a port from the shp2pgsql program that is shipped with
PostGIS.

The functionality has been tested with OpenJUMP, an open-source Geographic Infor-
mation System application available at http://openjump.org/wiki/show/HomePage.

12.4.6 Limitations

This is the first implementation of OpenGIS functionality in MonetDB. Many issues require
our attention, but priority will be derived from concrete external requests and availability
of manpower. The shortlist of open issues is:
• development of a JDBC extension to map the geometry datatypes to their Java coun-

terparts.
• support for 3D types.
• spatial optimizers in the MAL optimizer toolkit.

12.4.7 Spatial Types

MonetDB supports the OpenGIS types: Point, Curve, LineString, Surface, Polygon, Mul-
tiPoint, MultiCurve, MultiLineString, MultiSurface, MultiPolygon, Geometry and Geom-
Collection.

Chapter 12: SQL/XML 223

One non-OpenGIS type for fast access is used. This type ’mbr’ is used for storing a 2D
box. Functions to create these boxes are specified in following sections.

12.4.8 SQL functions on spatial objects

12.4.8.1 Functions on mbr’s

The following functions return the mbr of a given geometry:

CREATE FUNCTION mbr (p Point) RETURNS mbr external name geom.mbr;
CREATE FUNCTION mbr (c Curve) RETURNS mbr external name geom.mbr;
CREATE FUNCTION mbr (l LineString) RETURNS mbr external name geom.mbr;
CREATE FUNCTION mbr (s Surface) RETURNS mbr external name geom.mbr;
CREATE FUNCTION mbr (p Polygon) RETURNS mbr external name geom.mbr;
CREATE FUNCTION mbr (m multipoint) RETURNS mbr external name geom.mbr;
CREATE FUNCTION mbr (m multicurve) RETURNS mbr external name geom.mbr;
CREATE FUNCTION mbr (m multilinestring) RETURNS mbr external name geom.mbr;
CREATE FUNCTION mbr (m multisurface) RETURNS mbr external name geom.mbr;
CREATE FUNCTION mbr (m multipolygon) RETURNS mbr external name geom.mbr;
CREATE FUNCTION mbr (g Geometry) RETURNS mbr external name geom.mbr;
CREATE FUNCTION mbr (g GeomCollection) RETURNS mbr external name geom.mbr;

This function returns true iff two mbrs overlap:

CREATE FUNCTION mbroverlaps(a mbr, b mbr) RETURNS BOOLEAN external name geom."mbroverlaps";

12.4.8.2 Conversion from and to Well-known Text

Convert a Well-Known-Text string to a spatial object. The SRID parameter is a reference
to the Spatial Reference System in which the coordinates are expressed.

CREATE FUNCTION GeomFromText(wkt string, srid SMALLINT) RETURNS Geometry external name geom."GeomFromText";
CREATE FUNCTION PointFromText(wkt string, srid SMALLINT) RETURNS Point external name geom."PointFromText";
CREATE FUNCTION LineFromText(wkt string, srid SMALLINT) RETURNS LineString external name geom."LineFromText";
CREATE FUNCTION PolyFromText(wkt string, srid SMALLINT) RETURNS Polygon external name geom."PolyFromText";
CREATE FUNCTION MPointFromText(wkt string, srid SMALLINT) RETURNS MultiPoint external name geom."MultiPointFromText";
CREATE FUNCTION MLineFromText(wkt string, srid SMALLINT) RETURNS MultiLineString external name geom."MultiLineFromText";
CREATE FUNCTION MPolyFromText(wkt string, srid SMALLINT) RETURNS MultiPolygon external name geom."MultiPolyFromText";
CREATE FUNCTION GeomCollectionFromText(wkt string, srid SMALLINT) RETURNS MultiPolygon external name geom."GeomCollectionFromText";
-- alias
CREATE FUNCTION PolygonFromText(wkt string, srid SMALLINT) RETURNS Polygon external name geom."PolyFromText";

Return Well-know Text representation of spatial objects.

CREATE FUNCTION AsText(p Point) RETURNS STRING external name geom."AsText";
CREATE FUNCTION AsText(c Curve) RETURNS STRING external name geom."AsText";
CREATE FUNCTION AsText(l LineString) RETURNS STRING external name geom."AsText";
CREATE FUNCTION AsText(s Surface) RETURNS STRING external name geom."AsText";
CREATE FUNCTION AsText(p Polygon) RETURNS STRING external name geom."AsText";
CREATE FUNCTION AsText(p MultiPoint) RETURNS STRING external name geom."AsText";
CREATE FUNCTION AsText(c MultiCurve) RETURNS STRING external name geom."AsText";
CREATE FUNCTION AsText(l MultiLineString) RETURNS STRING external name geom."AsText";
CREATE FUNCTION AsText(s MultiSurface) RETURNS STRING external name geom."AsText";

Chapter 12: SQL/XML 224

CREATE FUNCTION AsText(p MultiPolygon) RETURNS STRING external name geom."AsText";
CREATE FUNCTION AsText(g Geometry) RETURNS STRING external name geom."AsText";

12.4.8.3 Analysis functions on Geometry

The following functions perform analysis operations on geometries:
CREATE FUNCTION Area(g Geometry) RETURNS FLOAT external name geom."Area";
CREATE FUNCTION Length(g Geometry) RETURNS FLOAT external name geom."Length";
CREATE FUNCTION Distance(a Geometry, b Geometry) RETURNS FLOAT external name geom."Distance";
CREATE FUNCTION Buffer(a Geometry, distance FLOAT) RETURNS Geometry external name geom."Buffer";
CREATE FUNCTION ConvexHull(a Geometry) RETURNS Geometry external name geom."ConvexHull";
CREATE FUNCTION Intersection(a Geometry, b Geometry) RETURNS Geometry external name geom."Intersection";
CREATE FUNCTION "Union"(a Geometry, b Geometry) RETURNS Geometry external name geom."Union";
CREATE FUNCTION Difference(a Geometry, b Geometry) RETURNS Geometry external name geom."Difference";
CREATE FUNCTION SymDifference(a Geometry, b Geometry) RETURNS Geometry external name geom."SymDifference";

CREATE FUNCTION Dimension(g Geometry) RETURNS integer external name geom."Dimension";
CREATE FUNCTION GeometryTypeId(g Geometry) RETURNS integer external name geom."GeometryTypeId";
CREATE FUNCTION SRID(g Geometry) RETURNS integer external name geom."SRID";
CREATE FUNCTION Envelope(g Geometry) RETURNS Geometry external name geom."Envelope";
CREATE FUNCTION IsEmpty(g Geometry) RETURNS BOOLEAN external name geom."IsEmpty";
CREATE FUNCTION IsSimple(g Geometry) RETURNS BOOLEAN external name geom."IsSimple";
CREATE FUNCTION Boundary(g Geometry) RETURNS Geometry external name geom."Boundary";

CREATE FUNCTION Equals(a Geometry, b Geometry) RETURNS BOOLEAN external name geom."Equals";
CREATE FUNCTION Disjoint(a Geometry, b Geometry) RETURNS BOOLEAN external name geom."Disjoint";
CREATE FUNCTION "Intersect"(a Geometry, b Geometry) RETURNS BOOLEAN external name geom."Intersect";
CREATE FUNCTION Touches(a Geometry, b Geometry) RETURNS BOOLEAN external name geom."Touches";
CREATE FUNCTION Crosses(a Geometry, b Geometry) RETURNS BOOLEAN external name geom."Crosses";
CREATE FUNCTION Within(a Geometry, b Geometry) RETURNS BOOLEAN external name geom."Within";
CREATE FUNCTION Contains(a Geometry, b Geometry) RETURNS BOOLEAN external name geom."Contains";
CREATE FUNCTION Overlaps(a Geometry, b Geometry) RETURNS BOOLEAN external name geom."Overlaps";
CREATE FUNCTION Relate(a Geometry, b Geometry, pattern STRING) RETURNS BOOLEAN external name geom."Relate";

12.4.8.4 SQL functions on Point

CREATE FUNCTION X(g Geometry) RETURNS double external name geom."X";
CREATE FUNCTION Y(g Geometry) RETURNS double external name geom."Y";

CREATE FUNCTION Point(x double,y double) RETURNS Point external name geom.point;

12.4.8.5 SQL functions on Curve

CREATE FUNCTION IsRing(l LineString) RETURNS BOOLEAN external name geom."IsRing";
CREATE FUNCTION StartPoint(l LineString) RETURNS Point external name geom."StartPoint"; -- not yet implemented
CREATE FUNCTION EndPoint(l LineString) RETURNS Point external name geom."EndPoint"; -- not yet implemented

12.4.8.6 SQL functions on LineString

CREATE FUNCTION NumPoints(l LineString) RETURNS integer external name geom."NumPoints"; -- not yet implemented

Chapter 12: SQL/XML 225

CREATE FUNCTION PointN(l LineString,i integer) RETURNS Point external name geom."PointN"; -- not yet implemented

12.4.8.7 SQL functions on Surface

CREATE FUNCTION PointOnSurface(s Surface) RETURNS Point external name geom."PointOnSurface"; -- not yet implemented
CREATE FUNCTION Centroid(s Surface) RETURNS Point external name geom."Centroid"; -- not yet implemented

12.4.8.8 SQL functions on Polygon

CREATE FUNCTION ExteriorRing(s Surface) RETURNS LineString external name geom."ExteriorRing"; -- not yet implemented
CREATE FUNCTION NumInteriorRing(s Surface) RETURNS integer external name geom."NumInteriorRing"; -- not yet implemented
CREATE FUNCTION InteriorRingN(s Surface,n integer) RETURNS LineString external name geom."InteriorRingN"; -- not yet implemented

12.4.8.9 SQL functions on GeomCollection

-- Unimplemented Documentation
CREATE FUNCTION NumGeometries(GeomCollection c) RETURNS integer external name geom."NumGeometries"; -- not yet implemented
CREATE FUNCTION GeometryN(GeomCollection c,n integer) RETURNS Geometry external name geom."GeometryN"; -- not yet implemented

Chapter 13: Application Programming Interfaces 226

13 Application Programming Interfaces

MonetDB comes with a complete set of programming libraries. Their basis is the MonetDB
application programming interface (Mapi), which describes the protocol understood by the
server. The Perl, PHP, and Python libraries are mostly wrappers around the Mapi routines.

The programming interface is based on a client-server architecture, where the client pro-
gram connects to a server using a TCP/IP connection to exchange commands and receives
answers. The underlying protocol uses plain UTF-8 data for ease of use and debugging.
This leads to publicly visible information exchange over a network, which may be undesir-
able. Therefore, a private and secure channel can be set up with the Secure Socket Layer
functionality.

A more tightly connection between application logic and database server is described in
Section 1.8.7 [Embedded Server], page 25.

13.1 The Mapi Library

The easiest way to extend the functionality of MonetDB is to construct an independent
application, which communicates with a running server using a database driver with a simple
API and a textual protocol. The effectiveness of such an approach has been demonstrated
by the wide use of database API implementations, such as Perl DBI, PHP, ODBC,...

13.1.1 Sample MAPI Application

The database driver implementation given in this document focuses on developing applica-
tions in C. The command collection has been chosen to align with common practice, i.e.
queries follow a prepare, execute, and fetch row paradigm. The output is considered a
regular table. An example of a mini application below illustrates the main operations.

#include <Mapi.h>
#include <stdio.h>
#include <stdlib.h>

#define die(dbh,hdl) (hdl?mapi_explain_query(hdl,stderr): \
dbh?mapi_explain(dbh,stderr): \

fprintf(stderr,"command failed\n"), \
exit(-1))

int main(int argc, char **argv)
{

Mapi dbh;
MapiHdl hdl = NULL;

dbh = mapi_connect("localhost", 50000, "monetdb", "monetdb", "sql", NULL);
if (mapi_error(dbh))

die(dbh, hdl);

if ((hdl = mapi_query(dbh, "create table emp(name varchar(20), age int)")) == NULL
|| mapi_error(dbh) != MOK)

Chapter 13: Application Programming Interfaces 227

die(dbh, hdl);
if (mapi_close_handle(hdl) != MOK)

die(dbh, hdl);
if ((hdl = mapi_query(dbh, "insert into emp values(’John’, 23)")) == NULL

|| mapi_error(dbh) != MOK)
die(dbh, hdl);

mapi_close_handle(hdl);
if (mapi_error(dbh) != MOK)

die(dbh, hdl);
if ((hdl = mapi_query(dbh, "insert into emp values(’Mary’, 22)")) == NULL

|| mapi_error(dbh) != MOK)
die(dbh, hdl);

mapi_close_handle(hdl);
if (mapi_error(dbh) != MOK)

die(dbh, hdl);
if ((hdl = mapi_query(dbh, "select * from emp")) == NULL

|| mapi_error(dbh) != MOK)
die(dbh, hdl);

while (mapi_fetch_row(hdl)) {
char *nme = mapi_fetch_field(hdl, 0);
char *age = mapi_fetch_field(hdl, 1);
printf("%s is %s\n", nme, age);

}
if (mapi_error(dbh) != MOK)

die(dbh, hdl);
mapi_close_handle(hdl);
if (mapi_error(dbh) != MOK)

die(dbh, hdl);
mapi_destroy(dbh);

return 0;
}

The mapi connect() operation establishes a communication channel with a running
server. The query language interface is either "sql", "mil" or "xquery".

Errors on the interaction can be captured using mapi error(), possibly followed by a
request to dump a short error message explanation on a standard file location. It has been
abstracted away in a macro.

Provided we can establish a connection, the interaction proceeds as in many similar
application development packages. Queries are shipped for execution using mapi query()
and an answer table can be consumed one row at a time. In many cases these functions
suffice.

The Mapi interface provides caching of rows at the client side. mapi query() will load
tuples into the cache, after which they can be read repeatedly using mapi fetch row()
or directly accessed (mapi seek row()). This facility is particularly handy when small,
but stable query results are repeatedly used in the client program.

Chapter 13: Application Programming Interfaces 228

To ease communication between application code and the cache entries, the user can bind
the C-variables both for input and output to the query parameters, and output columns,
respectively. The query parameters are indicated by ’?’ and may appear anywhere in the
query template.

The Mapi library expects complete lines from the server as answers to query actions.
Incomplete lines leads to Mapi waiting forever on the server. Thus formatted printing is
discouraged in favor of tabular printing as offered by the table.print() commands.

The following action is needed to get a working program. Compilation of the application
relies on the monetdb-config program shipped with the distribution. It localizes the include
files and library directories. Once properly installed, the application can be compiled and
linked as follows:

cc sample.c ‘monetdb-clients-config --cflags --libs‘ -lMapi -o sample
./sample

It assumes that the dynamic loadable libraries are in public places. If, however, the
system is installed in your private environment then either one of the two following options
can be used.

cc sample.c ‘monetdb-clients-config --cflags --libs‘ -lMapi -o sample \
-Wl,rpath,‘monetdb-clients-config --libdir‘
./sample

export LD_LIBRARY_PATH=‘monetdb-clients-config --libdir‘
cc sample.c ‘monetdb-clients-config --cflags --libs‘ -lMapi -o sample
./sample

The compilation on Windows is slightly more complicated. It requires more attention
towards the location of the include files and libraries.

13.1.2 Command Summary

The quick reference guide to the Mapi library is given below. More details on their con-
straints and defaults are given in the next section.
mapi bind() Bind string C-variable to a field
mapi bind numeric() Bind numeric C-variable to field
mapi bind var() Bind typed C-variable to a field
mapi cache freeup() Forcefully shuffle fraction for cache refreshment
mapi cache limit() Set the tuple cache limit
mapi cache shuffle() Set shuffle fraction for cache refreshment
mapi clear bindings() Clear all field bindings
mapi clear params() Clear all parameter bindings
mapi close handle() Close query handle and free resources
mapi connect() Connect to a mserver
mapi connect ssl() Connect to a mserver using Secure Socket Layer (SSL)
mapi destroy() Free handle resources
mapi disconnect() Disconnect from server
mapi error() Test for error occurrence
mapi execute() Execute a query
mapi execute array() Execute a query using string arguments
mapi explain() Display error message and context on stream

Chapter 13: Application Programming Interfaces 229

mapi explain query() Display error message and context on stream
mapi fetch all rows() Fetch all answers from server into cache
mapi fetch field() Fetch a field from the current row
mapi fetch field array() Fetch all fields from the current row
mapi fetch line() Retrieve the next line
mapi fetch reset() Set the cache reader to the beginning
mapi fetch row() Fetch row of values
mapi finish() Terminate the current query
mapi get dbname() Database being served
mapi get field count() Number of fields in current row
mapi get host() Host name of server
mapi get language() Query language name
mapi get mapi version() Mapi version name
mapi get monet versionId()MonetDB version identifier
mapi get monet version()MonetDB version name
mapi get motd() Get server welcome message
mapi get row count() Number of rows in cache or -1
mapi get trace() Get trace flag
mapi get user() Current user name
mapi next result() Go to next result set
mapi log() Activate logging file client/server interaction
mapi ping() Test server for accessibility
mapi prepare() Prepare a query for execution
mapi prepare array() Prepare a query for execution using arguments
mapi query() Send a query for execution
mapi query array() Send a query for execution with arguments
mapi query handle() Send a query for execution
mapi quick query array()Send a query for execution with arguments
mapi quick query() Send a query for execution
mapi quick response() Quick pass response to stream
mapi quote() Escape characters
mapi reconnect() Reconnect with a clean session context
mapi rows affected() Obtain number of rows changed
mapi seek row() Move row reader to specific location in cache
mapi setAutocommit() Set auto-commit flag
mapi stream query() Send query and prepare for reading tuple stream
mapi table() Get current table name
mapi timeout() Set timeout for long-running queries[TODO]
mapi trace() Set trace flag
mapi virtual result() Submit a virtual result set
mapi unquote() remove escaped characters

13.1.3 Mapi Library

The routines to build a MonetDB application are grouped in the library MonetDB Pro-
gramming Interface, or shorthand Mapi.

Chapter 13: Application Programming Interfaces 230

The protocol information is stored in a Mapi interface descriptor (mid). This descriptor
can be used to ship queries, which return a MapiHdl to represent the query answer. The
application can set up several channels with the same or a different mserver. It is the
programmer’s responsibility not to mix the descriptors in retrieving the results.

The application may be multi-threaded as long as the user respects the individual con-
nections represented by the database handlers.

The interface assumes a cautious user, who understands and has experience with the
query or programming language model. It should also be clear that references returned by
the API point directly into the administrative structures of Mapi. This means that they are
valid only for a short period, mostly between successive mapi fetch row() commands.
It also means that it the values are to retained, they have to be copied. A defensive
programming style is advised.

Upon an error, the routines mapi explain() and mapi explain query() give informa-
tion about the context of the failed call, including the expression shipped and any response
received. The side-effect is clearing the error status.

13.1.4 Error Message

Almost every call can fail since the connection with the database server can fail at any time.
Functions that return a handle (either Mapi or MapiHdl) may return NULL on failure,
or they may return the handle with the error flag set. If the function returns a non-NULL
handle, always check for errors with mapi error.

Functions that return MapiMsg indicate success and failure with the following codes.
MOK No error
MERROR Mapi internal error.
MTIMEOUT Error communicating with the server.

When these functions return MERROR or MTIMEOUT, an explanation of the er-
ror can be had by calling one of the functions mapi error str(), mapi explain(), or
mapi explain query().

To check for error messages from the server, call mapi result error(). This function
returns NULL if there was no error, or the error message if there was. A user-friendly
message can be printed using map explain result(). Typical usage is:
do {

if ((error = mapi_result_error(hdl)) != NULL)
mapi_explain_result(hdl, stderr);

while ((line = mapi_fetch_line(hdl)) != NULL)
/* use output */;

} while (mapi_next_result(hdl) == 1);

13.1.5 Mapi Function Reference

13.1.6 Connecting and Disconnecting

• Mapi mapi connect(const char *host, int port, const char *username, const char *pass-
word, const char *lang, const char *dbname)
Setup a connection with a mserver at a host :port and login with username and pass-
word. If host == NULL, the local host is accessed. If host starts with a ’/’ and the

Chapter 13: Application Programming Interfaces 231

system supports it, host is actually the name of a UNIX domain socket, and port is ig-
nored. If port == 0, a default port is used. If username == NULL, the username of the
owner of the client application containing the Mapi code is used. If password == NULL,
the password is omitted. The preferred query language is any of {sql,mil,mal,xquery
}. On success, the function returns a pointer to a structure with administration about
the connection.

• Mapi mapi connect ssl(const char *host, int port, const char *username, const char
*password, const char *lang, const char *dbname)

Setup a connection with a mserver at a host :port and login with username and pass-
word. The connection is made using the Secure Socket Layer (SSL) and hence all data
transfers to and from the server are encrypted. The parameters are the same as in
mapi connect().

• MapiMsg mapi disconnect(Mapi mid)

Terminate the session described by mid. The only possible uses of the handle after this
call is mapi destroy() and mapi reconnect(). Other uses lead to failure.

• MapiMsg mapi destroy(Mapi mid)

Terminate the session described by mid if not already done so, and free all resources.
The handle cannot be used anymore.

• MapiMsg mapi reconnect(Mapi mid)

Close the current channel (if still open) and re-establish a fresh connection. This will
remove all global session variables.

• MapiMsg mapi ping(Mapi mid)

Test availability of the server. Returns zero upon success.

13.1.7 Sending Queries

• MapiHdl mapi query(Mapi mid, const char *Command)

Send the Command to the database server represented by mid. This function returns
a query handle with which the results of the query can be retrieved. The handle
should be closed with mapi close handle(). The command response is buffered for
consumption, c.f. mapi\ fetch\ row().

• MapiMsg mapi query handle(MapiHdl hdl, const char *Command)

Send the Command to the database server represented by hdl, reusing the handle from
a previous query. If Command is zero it takes the last query string kept around. The
command response is buffered for consumption, e.g. mapi fetch row().

• MapiHdl mapi query array(Mapi mid, const char *Command, char **argv)

Send the Command to the database server replacing the placeholders (?) by the string
arguments presented.

• MapiHdl mapi quick query(Mapi mid, const char *Command, FILE *fd)

Similar to mapi query(), except that the response of the server is copied immediately
to the file indicated.

• MapiHdl mapi quick query array(Mapi mid, const char *Command, char **argv, FILE
*fd)

Chapter 13: Application Programming Interfaces 232

Similar to mapi query array(), except that the response of the server is not ana-
lyzed, but shipped immediately to the file indicated.

• MapiHdl mapi stream query(Mapi mid, const char *Command, int windowsize)

Send the request for processing and fetch a limited number of tuples (determined by
the window size) to assess any erroneous situation. Thereafter, prepare for continual
reading of tuples from the stream, until an error occurs. Each time a tuple arrives, the
cache is shifted one.

• MapiHdl mapi prepare(Mapi mid, const char *Command)

Move the query to a newly allocated query handle (which is returned). Possibly interact
with the back-end to prepare the query for execution.

• MapiMsg mapi execute(MapiHdl hdl)

Ship a previously prepared command to the back-end for execution. A single answer
is pre-fetched to detect any runtime error. MOK is returned upon success.

• MapiMsg mapi execute array(MapiHdl hdl, char **argv)

Similar to mapi\ execute but replacing the placeholders for the string values provided.

• MapiMsg mapi finish(MapiHdl hdl)

Terminate a query. This routine is used in the rare cases that consumption of the tuple
stream produced should be prematurely terminated. It is automatically called when a
new query using the same query handle is shipped to the database and when the query
handle is closed with mapi close handle().

• MapiMsg mapi virtual result(MapiHdl hdl, int columns, const char **columnnames,
const char **columntypes, const int *columnlengths, int tuplecount, const char ***tu-
ples)

Submit a table of results to the library that can then subsequently be accessed as if
it came from the server. columns is the number of columns of the result set and must
be greater than zero. columnnames is a list of pointers to strings giving the names of
the individual columns. Each pointer may be NULL and columnnames may be NULL
if there are no names. tuplecount is the length (number of rows) of the result set. If
tuplecount is less than zero, the number of rows is determined by a NULL pointer in
the list of tuples pointers. tuples is a list of pointers to row values. Each row value is a
list of pointers to strings giving the individual results. If one of these pointers is NULL
it indicates a NULL/nil value.

13.1.8 Getting Results

• int mapi get field count(Mapi mid)

Return the number of fields in the current row.

• int mapi get row count(Mapi mid)

If possible, return the number of rows in the last select call. A -1 is returned if this
information is not available.

• int mapi rows affected(MapiHdl hdl)

Return the number of rows affected by a database update command such as SQL’s
INSERT/DELETE/UPDATE statements.

Chapter 13: Application Programming Interfaces 233

• int mapi fetch row(MapiHdl hdl)
Retrieve a row from the server. The text retrieved is kept around in a buffer linked with
the query handle from which selective fields can be extracted. It returns the number of
fields recognized. A zero is returned upon encountering end of sequence or error. This
can be analyzed in using mapi error().

• int mapi fetch all rows(MapiHdl hdl)
All rows are cached at the client side first. Subsequent calls to mapi fetch row()
will take the row from the cache. The number or rows cached is returned.

• int mapi quick response(MapiHdl hdl, FILE *fd)
Read the answer to a query and pass the results verbatim to a stream. The result is
not analyzed or cached.

• MapiMsg mapi seek row(MapiHdl hdl, int rownr, int whence)
Reset the row pointer to the requested row number. If whence is MAPI SEEK SET
(0), rownr is the absolute row number (0 being the first row); if whence is
MAPI SEEK CUR (1), rownr is relative to the current row; if whence is
MAPI\ SEEK\ END (2), rownr is relative to the last row.

• MapiMsg mapi fetch reset(MapiHdl hdl)
Reset the row pointer to the first line in the cache. This need not be a tuple. This is
mostly used in combination with fetching all tuples at once.

• char **mapi fetch field array(MapiHdl hdl)
Return an array of string pointers to the individual fields. A zero is returned upon
encountering end of sequence or error. This can be analyzed in using mapi\ error().

• char *mapi fetch field(MapiHdl hdl, int fnr)
Return a pointer a C-string representation of the value returned. A zero is returned
upon encountering an error or when the database value is NULL; this can be analyzed
in using mapi\ error().

• MapiMsg mapi next result(MapiHdl hdl)
Go to the next result set, discarding the rest of the output of the current result set.

13.1.9 Errors

• MapiMsg mapi error(Mapi mid)
Return the last error code or 0 if there is no error.

• char *mapi error str(Mapi mid)
Return a pointer to the last error message.

• char *mapi result error(MapiHdl hdl)
Return a pointer to the last error message from the server.

• MapiMsg mapi explain(Mapi mid, FILE *fd)
Write the error message obtained from mserver to a file.

• MapiMsg mapi explain query(MapiHdl hdl, FILE *fd)
Write the error message obtained from mserver to a file.

• MapiMsg mapi explain result(MapiHdl hdl, FILE *fd)
Write the error message obtained from mserver to a file.

Chapter 13: Application Programming Interfaces 234

13.1.10 Parameters

• MapiMsg mapi bind(MapiHdl hdl, int fldnr, char **val)

Bind a string variable with a field in the return table. Upon a successful subsequent
mapi fetch row() the indicated field is stored in the space pointed to by val. Returns
an error if the field identified does not exist.

• MapiMsg mapi bind var(MapiHdl hdl, int fldnr, int type, void *val)

Bind a variable to a field in the return table. Upon a successful subsequent
mapi fetch row(), the indicated field is converted to the given type and stored
in the space pointed to by val. The types recognized are { MAPI TINY,
MAPI UTINY, MAPI SHORT, MAPI USHORT, MAPI INT, MAPI UINT,
MAPI LONG, MAPI ULONG, MAPI LONGLONG, MAPI ULONGLONG,
MAPI CHAR, MAPI VARCHAR, MAPI FLOAT, MAPI DOUBLE,
MAPI DATE, MAPI TIME, MAPI DATETIME }. The binding operations
should be performed after the mapi execute command. Subsequently all rows being
fetched also involve delivery of the field values in the C-variables using proper
conversion. For variable length strings a pointer is set into the cache.

• MapiMsg mapi bind numeric(MapiHdl hdl, int fldnr, int scale, int precision, void *val)

Bind to a numeric variable, internally represented by MAPI INT Describe the location
of a numeric parameter in a query template.

• MapiMsg mapi clear bindings(MapiHdl hdl)

Clear all field bindings.

• MapiMsg mapi param(MapiHdl hdl, int fldnr, char **val)

Bind a string variable with the n-th placeholder in the query template. No conversion
takes place.

• MapiMsg mapi param type(MapiHdl hdl, int fldnr, int ctype, int sqltype, void *val)

Bind a variable whose type is described by ctype to a parameter whose type is described
by sqltype.

• MapiMsg mapi param numeric(MapiHdl hdl, int fldnr, int scale, int precision, void
*val)

Bind to a numeric variable, internally represented by MAPI INT.

• MapiMsg mapi param string(MapiHdl hdl, int fldnr, int sqltype, char *val, int *sizeptr)

Bind a string variable, internally represented by MAPI VARCHAR, to a parameter.
The sizeptr parameter points to the length of the string pointed to by val. If sizeptr
== NULL or *sizeptr == -1, the string is NULL-terminated.

• MapiMsg mapi clear params(MapiHdl hdl)

Clear all parameter bindings.

13.1.11 Miscellaneous

• MapiMsg mapi setAutocommit(Mapi mid, int autocommit)

Set the autocommit flag (default is on). This only has an effect when the language is
SQL. In that case, the server commits after each statement sent to the server.

Chapter 13: Application Programming Interfaces 235

• MapiMsg mapi cache limit(Mapi mid, int maxrows)

A limited number of tuples are pre-fetched after each execute(). If maxrows is neg-
ative, all rows will be fetched before the application is permitted to continue. Once
the cache is filled, a number of tuples are shuffled to make room for new ones, but
taking into account non-read elements. Filling the cache quicker than reading leads to
an error.

• MapiMsg mapi cache shuffle(MapiHdl hdl, int percentage)

Make room in the cache by shuffling percentage tuples out of the cache. It is sometimes
handy to do so, for example, when your application is stream-based and you process
each tuple as it arrives and still need a limited look-back. This percentage can be set
between 0 to 100. Making shuffle= 100% (default) leads to paging behavior, while
shuffle==1 leads to a sliding window over a tuple stream with 1% refreshing.

• MapiMsg mapi cache freeup(MapiHdl hdl, int percentage)

Forcefully shuffle the cache making room for new rows. It ignores the read counter, so
rows may be lost.

• char * mapi quote(const char *str, int size)

Escape special characters such as \n, \t in str with backslashes. The returned value is
a newly allocated string which should be freed by the caller.

• char * mapi unquote(const char *name)

The reverse action of mapi quote(), turning the database representation into a C-
representation. The storage space is dynamically created and should be freed after
use.

• MapiMsg mapi trace(Mapi mid, int flag)

Set the trace flag to monitor interaction with the server.

• int mapi get trace(Mapi mid)

Return the current value of the trace flag.

• MapiMsg mapi trace log(Mapi mid, const char *fname)

Log the interaction between the client and server for offline inspection. Beware that
the log file overwrites any previous log. It is not intended for recovery.

The remaining operations are wrappers around the data structures maintained. Note
that column properties are derived from the table output returned from the server.

• char *mapi get name(MapiHdl hdl, int fnr)

• char *mapi get type(MapiHdl hdl, int fnr)

• char *mapi get table(MapiHdl hdl, int fnr)

• int mapi get len(Mapi mid, int fnr)

• char *mapi get dbname(Mapi mid)

• char *mapi get host(Mapi mid)

• char *mapi get user(Mapi mid)

• char *mapi get lang(Mapi mid)

• char *mapi get motd(Mapi mid)

Chapter 13: Application Programming Interfaces 236

• char **mapi tables(Mapi mid)
Return a list of accessible database tables.

• char **mapi fields(Mapi mid)
Return a list of accessible tables fields. This can also be obtained by inspecting the
field descriptor returned by mapi fetch field().

13.2 MonetDB Perl Library

Perl is one of the more common scripting languages for which a ’standard’ database appli-
cation programming interface is defined. It is called DBI and it was designed to protect
you from the API library details of multiple DBMS vendors. It has a very simple interface
to execute SQL queries and for processing the results sent back. DBI doesn’t know how to
talk to any particular database, but it does know how to locate and load in DBD (‘Data-
base Driver’) modules. The DBD modules encapsulate the interface library’s intricacies and
knows how to talk to the real databases.

MonetDB comes with its own DBD module which is included in both the source and
binary distribution packages. The module is also available via CPAN.

Two sample Perl applications are included in the source distribution; a MIL session and
a simple client to interact with a running server.

For further documentation we refer to the Perl community home page.

13.2.1 A Simple Perl Example

use strict;
use warnings;
use DBI();

print "\nStart a simple Monet MIL interaction\n\n";

determine the data sources:
my @ds = DBI->data_sources(’monetdb’);
print "data sources: @ds\n";

connect to the database:
my $dsn = ’dbi:monetdb:database=test;host=localhost;port=50000;language=mil’;
my $dbh = DBI->connect($dsn,

undef, undef, # no authentication in MIL
{ PrintError => 0, RaiseError => 1 } # turn on exception handling

);
{

simple MIL statement:
my $sth = $dbh->prepare(’print(2);’);
$sth->execute;
my @row = $sth->fetchrow_array;
print "field[0]: $row[0], last index: $#row\n";

}
{

Chapter 13: Application Programming Interfaces 237

my $sth = $dbh->prepare(’print(3);’);
$sth->execute;
my @row = $sth->fetchrow_array;
print "field[0]: $row[0], last index: $#row\n";

}
{

deliberately executing a wrong MIL statement:
my $sth = $dbh->prepare(’(xyz 1);’);
eval { $sth->execute }; print "ERROR REPORTED: $@" if $@;

}
$dbh->do(’var b:=new(int,str);’);
$dbh->do(’insert(b,3,"three");’);
{

variable binding stuff:
my $sth = $dbh->prepare(’insert(b,?,?);’);
$sth->bind_param(1, 7 , DBI::SQL_INTEGER());
$sth->bind_param(2,’seven’);
$sth->execute;

}
{

my $sth = $dbh->prepare(’print(b);’);
get all rows one at a time:
$sth->execute;
while (my $row = $sth->fetch) {

print "bun: $row->[0], $row->[1]\n";
}
get all rows at once:
$sth->execute;
my $t = $sth->fetchall_arrayref;
my $r = @$t; # row count
my $f = @{$t->[0]}; # field count
print "rows: $r, fields: $f\n";
for my $i (0 .. $r-1) {

for my $j (0 .. $f-1) {
print "field[$i,$j]: $t->[$i][$j]\n";

}
}

}
{

get values of the first column from each row:
my $row = $dbh->selectcol_arrayref(’print(b);’);
print "head[$_]: $row->[$_]\n" for 0 .. 1;

}
{

my @row = $dbh->selectrow_array(’print(b);’);
print "field[0]: $row[0]\n";
print "field[1]: $row[1]\n";

Chapter 13: Application Programming Interfaces 238

}
{

my $row = $dbh->selectrow_arrayref(’print(b);’);
print "field[0]: $row->[0]\n";
print "field[1]: $row->[1]\n";

}
$dbh->disconnect;
print "\nFinished\n";

13.3 MonetDB PHP Library

The MonetDB distribution comes with a MAPI based PHP interface For general compilation
of MonetDB see the howto’s for Unix and Linux. The unix configure process normally tries
to detect if you have PHP including developer packages installed and builds the PHP module
only if you have it. With the –with-php option you could tell ’configure’ where to find the
PHP installation.

When the build process is complete you should have a PHP extension dir under your
MonetDB prefix directory. Usually this is prefix/lib(64)/php5. It contains the loadable
php module, lib/php5/monetdb.dll.

Depending on your local setup you could now use these files by coping them into the
system extension dir or with a private webserver you could simply reset the environment
variables, include path and extension dir. For example you could have a php.ini file which
has the following php section.

[PHP]
safe_mode = Off
safe_mode_gid = Off
extension_dir = /opt/MonetDB-4.6/lib(64)/php4

13.3.1 A Simple PHP Example

A tiny example of the use the MonetDB PHP module follows:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"" xml:lang="en" lang="en">

<head>
<title>MonetDB Query</title>

</head>

<body>
<?php

if (isset($_POST[’query’]))
{

$db = monetdb_connect(’sql’, ’localhost’, 50000, ’monetdb’,
’monetdb’)

or die(’Failed to connect to MonetDB
’);

Chapter 13: Application Programming Interfaces 239

$sql = stripslashes($_POST[’query’]);
$res = monetdb_query($sql);
while ($row = monetdb_fetch_assoc($res))
{

print "<pre>\n";
print_r($row);
print "</pre>\n";

}
}

print "<form method=\"post\" action=\"{$_SERVER[’PHP_SELF’]}\">\n";
print "<label for=\"query\">SQL Query:</label>\n";
print "<input type=\"text\" name=\"query\" id=\"query\"

value=\"{$_POST[’query’]}\" />\n";
print "<input type=\"submit\" value=\"Execute\" />\n";
print "</form>\n";

?>
</body>

</html>

More examples can be found in the sources.
The PHP module is aligned with the PostgreSQL implementation. A synopsis of the

operations provided:
• proto resource monetdb connect([string host [, string port [, string username [, string

password [, string language]]]]]) Open a MonetDB connection
• proto resource monetdb pconnect([string host [, string port [, string username [, string

password [, string language]]]]]) Open a persistent MonetDB connection
• proto bool monetdb close([resource connection]) Close a MonetDB connection
• proto string monetdb dbname([resource connection]) Get the database name
• proto string monetdb last error([resource connection]) Get the error message string
• proto string monetdb host([resource connection]) Returns the host name associated

with the connection
• proto array monetdb version([resource connection]) Returns an array with client, pro-

tocol and server version (when available)
• proto bool monetdb ping([resource connection]) Ping database. If connection is bad,

try to reconnect.
• proto resource monetdb query([resource connection,] string query) Execute a query
• proto resource monetdb query params([resource connection,] string query, array

params) Execute a query
• proto resource monetdb prepare([resource connection,] string stmtname, string query)

Prepare a query for future execution
• proto resource monetdb execute([resource connection,] string stmtname, array params)

Execute a prepared query

Chapter 13: Application Programming Interfaces 240

• proto int monetdb num rows(resource result) Return the number of rows in the result
• proto int monetdb num fields(resource result) Return the number of fields in the result
• proto int monetdb affected rows(resource result) Returns the number of affected tuples
• proto string pg last notice(resource connection) Returns the last notice set by the

back-end
• proto string monetdb field name(resource result, int field number) Returns the name

of the field
• proto string monetdb field table(resource result, int field number) Returns the name

of the table field belongs to
• proto string monetdb field type(resource result, int field number) Returns the type of

the field
• proto int monetdb field num(resource result, string field name) Returns the field num-

ber of the named field
• proto mixed monetdb fetch result(resource result, [int row number,] mixed field name)

Returns values from a result identifier
• proto array monetdb fetch row(resource result [, int row [, int result type]]) Get a row

as an enumerated array
• proto array monetdb fetch assoc(resource result [, int row]) Fetch a row as an assoc

array
• proto array monetdb fetch array(resource result [, int row [, int result type]]) Fetch a

row as an array
• proto object monetdb fetch object(resource result [, int row [, string class name [,

NULL|array ctor params]]]) Fetch a row as an object
• proto bool monetdb result seek(resource result, int offset) Set internal row offset
• proto int monetdb field prtlen(resource result, [int row,] mixed field name or number)

Returns the printed length
• proto int monetdb field is null(resource result, [int row,] mixed field name or number)

Test if a field is NULL
• proto bool monetdb free result(resource result) Free result memory
• proto string monetdb escape string(string data) Escape string for text/char type
• proto int monetdb connection status(resource connnection) Get connection status
• proto bool monetdb connection reset(resource connection) Reset connection (recon-

nect)
• proto bool monetdb put line([resource connection,] string query) Send null-terminated

string to back-end server
• proto bool monetdb end copy([resource connection]) Sync with back-end. Completes

the Copy command
• proto array monetdb copy to(resource connection, string table name [, string delimiter

[, string null as]]) Copy table to array
• proto bool monetdb copy from(resource connection, string table name , array rows [,

string delimiter [, string null as]]) Copy table from array

Chapter 13: Application Programming Interfaces 241

• proto bool monetdb connection busy(resource connection) Get connection is busy or
not

• proto bool monetdb send query(resource connection, string query) Send asynchronous
query

• proto bool monetdb send query params(resource connection, string query) Send asyn-
chronous parameterized query

• proto bool monetdb send prepare(resource connection, string stmtname, string query)
Asynchronously prepare a query for future execution

• proto bool monetdb send execute(resource connection, string stmtname, array params)
Executes prevriously prepared stmtname asynchronously

• proto resource monetdb get result(resource connection) Get asynchronous query result
• proto mixed monetdb result status(resource result[, long result type]) Get status of

query result
• proto array monetdb meta data(resource db, string table) Get meta data
• proto array monetdb convert(resource db, string table, array values[, int options])

Check and convert values for MonetDB SQL statement
• proto mixed monetdb insert(resource db, string table, array values[, int options]) Insert

values (filed=>value) to table
• proto mixed monetdb update(resource db, string table, array fields, array ids[, int

options]) Update table using values (field=>value) and ids (id=>value)
• proto mixed monetdb delete(resource db, string table, array ids[, int options]) Delete

records has ids (id=>value)
• proto mixed monetdb select(resource db, string table, array ids[, int options]) Select

records that has ids (id=>value)

13.4 MonetDB Python Library

The MonetDB distribution comes with a Python DB-API driver. This is build on top of
the MAPI interface for Python.

13.4.1 Installation

The unix configure process normally tries to detect if you have python including developer
packages installed and builds the python module only if you have it. With the –with-python
option you could tell ’configure’ where to find the python installation.

When the build process is complete you should have a python library directory under
your MonetDB prefix directory. Usually this is prefix/lib(64)/python2.4/site-packages. Now
add this directory to your PYTHONPATH.

For windows setups the story is a little bit more complex. TODO

13.4.2 A Simple Python Example

A small example to access the SQL functionality is shown below.
import MonetSQLdb

Let the cursor return dictionaries instead of tuples:

Chapter 13: Application Programming Interfaces 242

x = MonetSQLdb.connect(cursorclass = MonetSQLdb.cursors.DictCursor)

x = MonetSQLdb.connect(host = ’localhost’, user = ’monetdb’,
password = ’monetdb’, lang = ’sql’)

c = x.cursor()
c.execute(’select * from tables’)

print c.fetchone()
print c.fetchall()

x.close()

13.4.3 Python MonetDB functions

13.5 MonetDB JDBC Driver

The most obvious way to connect to a data source using the Java programming language
is by making use of the in Java defined JDBC framework.

MonetDB has a native Java JDBC driver type 4 which allows use of the MonetDB
database in a Java alike way.

It is quite difficult to have a fully complete JDBC implementation. Also this driver isn’t
complete in that sense. However, it is believed that the most prominent parts of the JDBC
interface are implemented, and in such a way that they adhere to the specifications. If you
make extensive use of JDBC semantics and rely on many of its features, please read the
release notes which are to be found in the src/jdbc directory of the sql CVS tree.

This document will give a short description how to use the MonetDB JDBC driver in
Java applications. A familiarity with the Java JDBC API is required to fully understand
this document. Please note that you can find the complete JDBC API on Sun’s web site
http://java.sun.com/.

13.5.1 Requirements

In order to use the MonetDB JDBC driver in Java applications you need (of course) a
running MonetDB instance with the SQL module loaded.\\ The SQL module is a separate
module in the CVS tree, and should be installed separately, since it is not included in the
main MonetDB module.

You should be able to issue the following command on the MonetDB prompt without
errors:

include sql;

13.5.2 Getting the driver Jar

If you (compiled and) installed MonetDB and the SQL module the regular way, you can find
a two jar-archives in the directory share/MonetDB/lib called monetdb-X.Y-jdbc.jar
and jdbcclient.jar in the installation root (chosen during the configure process). For
regular applications that only need the JDBC driver, the first jar-file is sufficient. When
the JdbcClient utility is required, the second is required. Applications that require the

Chapter 13: Application Programming Interfaces 243

JDBC driver will, however, work with both jar-files. The x and y in the names represent
the major and minor version numbers of the JDBC driver.

13.5.3 Compiling the driver (using ant, optional)

The directory src/jdbc of the sql CVS tree contains all the files to build the driver using
Apache’s Ant tool. Simply issuing the command ant should be sufficient to build the
driver jar-archive in the subdirectory jars. See the ant web site for more documentation
on the ant build-tool. http://ant.apache.org/ The Java sources require at least a Java
2 platform 1.4 compatible compiler.

13.5.4 Testing the driver using the JdbcClient utility

Before you start developing your programs which use the MonetDB JDBC driver it is
generally a good idea to check if the driver actually works in your environment.\\ Follow
the steps below to assure your setup is complete:
1. start MonetDB
2. load the SQL module
3. run the JdbcClient utility using java -jar {path/to/jdbcclient.jar} -umonetdb

(with password monetdb)

The last step should give you something like this:
% java -jar jars/jdbcclient.jar -umonetdb
password:

Welcome to the MonetDB interactive JDBC terminal!
Database: MonetDB 5.0.0
Driver: MonetDB Native Driver 1.5 (Steadfast_pre4 20061124)
Type \q to quit, \h for a list of available commands
auto commit mode: on
monetdb->

13.5.5 Using the driver in your Java programs

In order to use the MonetDB JDBC driver, the jar-archive has to be in the Java classpath.
Make sure this is actually the case.

Loading the driver in your Java program requires two lines of code:
// make sure the ClassLoader has the MonetDB JDBC driver loaded
Class.forName("nl.cwi.monetdb.jdbc.MonetDriver");
// request a Connection to a MonetDB server running on ’localhost’
Connection con = DriverManager.getConnection("jdbc:monetdb://localhost/database", "monetdb", "monetdb");

The first line makes sure the Java ClassLoader has initialised (and loaded) the Driver
class of the MonetDB JDBC package, so it is registered with the DriverManager. The second
line requests a Connection object from the DriverManager which is suitable for MonetDB.

The string passed to the "getConnection()"method is defined as
"jdbc:monetdb://<host>[:<port>]/<database>" where elements between "<"
and ">" are required and elements between "[" and "]" are optional. Note that even
though the database can be specified, it usually is not supported by the database. A
warning is issued each time that this value is being ignored.

Chapter 13: Application Programming Interfaces 244

13.5.6 A sample Java program

import java.sql.*;

/**
* This example assumes there exist tables a and b filled with some data.
* On these tables some queries are executed and the JDBC driver is tested
* on it’s accuracy and robustness against ’users’.
*
* @author Fabian Groffen
*/
public class MJDBCTest {

public static void main(String[] args) throws Exception {
// make sure the driver is loaded
Class.forName("nl.cwi.monetdb.jdbc.MonetDriver");
Connection con = DriverManager.getConnection("jdbc:monetdb://localhost/database", "monetdb", "monetdb");
Statement st = con.createStatement();
ResultSet rs;

rs = st.executeQuery("SELECT a.var1, COUNT(b.id) as total FROM a, b WHERE a.var1 = b.id AND a.var1 = ’andb’ GROUP BY a.var1 ORDER BY a.var1, total;");
// get meta data and print columns with their type
ResultSetMetaData md = rs.getMetaData();
for (int i = 1; i <= md.getColumnCount(); i++) {

System.out.print(md.getColumnName(i) + ":" +
md.getColumnTypeName(i) + "\t");

}
System.out.println("");
// print the data: only the first 5 rows, while there probably are
// a lot more. This shouldn’t cause any problems afterwards since the
// result should get properly discarded on the next query
for (int i = 0; rs.next() && i < 5; i++) {

for (int j = 1; j <= md.getColumnCount(); j++) {
System.out.print(rs.getString(j) + "\t");

}
System.out.println("");

}

// tell the driver to only return 5 rows, it can optimize on this
// value, and will not fetch any more than 5 rows.
st.setMaxRows(5);
// we ask the database for 22 rows, while we set the JDBC driver to
// 5 rows, this shouldn’t be a problem at all...
rs = st.executeQuery("select * from a limit 22");
// read till the driver says there are no rows left
for (int i = 0; rs.next(); i++) {

System.out.print("[" + rs.getString("var1") + "]");
System.out.print("[" + rs.getString("var2") + "]");

Chapter 13: Application Programming Interfaces 245

System.out.print("[" + rs.getInt("var3") + "]");
System.out.println("[" + rs.getString("var4") + "]");

}

// this close is not needed, should be done by next execute(Query) call
// however if there can be some time between this point and the next
// execute call, it is from a resource perspective better to close it.
//rs.close();

// unset the row limit; 0 means as much as the database sends us
st.setMaxRows(0);
// we only ask 10 rows
rs = st.executeQuery("select * from b limit 10;");
// and simply print them
while (rs.next()) {

System.out.print(rs.getInt("rowid") + ", ");
System.out.print(rs.getString("id") + ", ");
System.out.print(rs.getInt("var1") + ", ");
System.out.print(rs.getInt("var2") + ", ");
System.out.print(rs.getString("var3") + ", ");
System.out.println(rs.getString("var4"));

}

// this close is not needed, as the Statement will close the last
// ResultSet around when it’s closed
// again, if that can take some time, it’s nicer to close immediately
// the reason why these closes are commented out here, is to test if
// the driver really cleans up it’s mess like it should
//rs.close();

// perform a ResultSet-less query (with no trailing ; since that should
// be possible as well and is JDBC standard)
// Note that this method should return the number of updated rows. This
// method however always returns -1, since Monet currently doesn’t
// support returning the affected rows.
st.executeUpdate("delete from a where var1 = ’zzzz’");

// closing the connection should take care of closing all generated
// statements from it...
// don’t forget to do it yourself if the connection is reused or much
// longer alive, since the Statement object contains a lot of things
// you probably want to reclaim if you don’t need them anymore.
//st.close();
con.close();

}
}

Chapter 13: Application Programming Interfaces 246

13.6 MonetDB ODBC Driver

Short for Open DataBase Connectivity, a standard database access method developed by
the SQL Access group in 1992. The goal of ODBC is to make it possible to access any
data from any application, regardless of which database management system (DBMS) is
handling the data. ODBC manages this by inserting a middle layer, called a database
driver, between an application and the DBMS. The purpose of this layer is to translate the
application’s data queries into commands that the DBMS understands. For this to work,
both the application and the DBMS must be ODBC-compliant – that is, the application
must be capable of issuing ODBC commands and the DBMS must be capable of responding
to them.

The ODBC driver for MonetDB is included in the Windows installer and Linux RPMs.
The source can be found in the SQL CVS tree.

To help you setup your system to use the ODBC driver with MonetDB, two how-tos are
available, one for Windows users and one for Linux/UNIX users.
1. Windows Excel import demo A little demo showing how to import data from a Mon-

etDB server into Microsoft Excel.
2. Unix/Linux ODBC guide An example of how to configure ODBC on Unix/Linux.

Appendix A: SQL Features 247

Appendix A SQL Features

The table below illustrates the features supported (S) and not supported (N) in the Mon-
etDB/SQL distribution. Beware, some of the features are technically impossible to support
without major code changes or excessive performance consequences.

Feature ID Feature name S/N
B011-B017 Embedded Language support. Core SQL:1999 says that at

least one of Embedded Ada, Embedded C, Embedded Cobol,
Embedded Fortran, Embedded MUMPS, Embedded Pascal
or Embedded PL/I 1 should be supported.

N

E011 Numeric data types (FULL support) S
E011-01 INTEGER and SMELLIEST data types (including all

spellings)
S

E011-02 REAL, DOUBLE PRECISON, and FLOAT data types S
E011-03 DECIMAL and NUMERIC data types S
E011-04 Arithmetic operators S
E011-05 Numeric comparison S
E011-06 Implicit casting among the numeric data types S
E021 Character data types S(PARTIAL

support)
E021-01 CHARACTER data type (including all its spellings) S
E021-02 CHARACTER VARYING data type (including all its

spellings)
S

E021-03 Character literals
E021-04 CHARACTER LENGTH function S
E021-05 OCTET LENGTH function S
E021-06 SUBSTRING function S
E021-07 Character concatenation S
E021-08 UPPER and LOWER functions S
E021-09 TRIM function S
E021-10 Implicit casting among the character data types S
E021-11 POSITION function S
E021-12 Character comparison S
E031 Identifiers (FULL support) S
E031-01 Delimited identifiers S
E031-02 Lower case identifiers S
E031-03 Trailing underscore S
E051 Basic query specification (FULL support) S
E051-01 SELECT DISTINCT S
E051-02 GROUP BY clause S
E051-04 GROUP BY can contain columns not in select-list S
E051-05 Select list items can be renamed S
E051-06 HAVING clause S
E051-07 Qualified * in select list S
E051-08 Correlation names in the FROM clause S
E051-09 Rename columns in the FROM clause S

Appendix A: SQL Features 248

E061 Basic predicates and search conditions (FULL support) S
E061-01 Comparison predicate S
E061-02 BETWEEN predicate S
E061-03 IN predicate with list of values S
E061-04 LIKE predicate S
E061-05 LIKE predicate: ESCAPE clause S
E061-06 NULL predicate S
E061-07 Quantified comparison predicate S
E061-08 EXISTS predicate S
E061-09 Subqueries in comparison predicate S
E061-11 Subqueries in IN predicate S
E061-12 Subqueries in quantified comparison predicate S
E061-13 Correlated subqueries S
E061-14 Search condition S
E071 Basic query expressions S (FULL

support)
E071-01 UNION DISTINCT table operator S
E071-02 UNION ALL table operator S
E071-03 EXCEPT DISTINCT table operator S
E071-05 Columns combined via table operators need not have exactly

the same data type
S

E071-06 Table operators in subqueries S
E081 Basic Privileges S
E081-01 SELECT privilege at the table level S
E081-02 DELETE privilege S
E081-03 INSERT privilege at the table level S
E081-04 UPDATE privilege at the table level S
E081-05 UPDATE privilege at the column level S
E081-06 REFERENCES privilege at the table level N

(SELECT
privilege is
used)

E081-07 REFERENCES privilege at the column level N
(SELECT
privilege is
used)

E081-08 WITH GRANT OPTION S
E081-09 USAGE privilege N
E081-10 EXECUTE privilege N
E091 Set functions (FULL support) S
E091-01 AVG S
E091-02 COUNT S
E091-03 MAX S
E091-04 MIN S
E091-05 SUM S
E091-06 ALL quantifier S

Appendix A: SQL Features 249

E091-07 DISTINCT quantifier S
E101 Basic data manipulation (FULL support) S
E101-01 INSERT statement S
E101-03 Searched UPDATE statement S
E101-04 Searched DELETE statement S
E111 Single row SELECT statement S
E121 Basic cursor support N (Cursors

are not
supported)

E121-01 DECLARE CURSOR
E121-02 ORDER BY columns need not be in select list S
E121-03 Value expressions in ORDER BY clause N
E121-04 OPEN statement N
E121-06 Positioned UPDATE statement N
E121-07 Positioned DELETE statement N
E121-08 CLOSE statement N
E121-10 FETCH statement: implicit NEXT N
E121-17 WITH HOLD cursors N
E131 Null value support (nulls in lieu of values) S
E141 Basic integrity constraints S
E141-01 NOT NULL constraints S
E141-02 UNIQUE constraints of NOT NULL columns S
E141-03 PRIMARY KEY constraints S
E141-04 Basic FOREIGN KEY constraint with the NO ACTION

default
S

E141-06 CHECK constraints N
E141-07 Column defaults S
E141-08 NOT NULL inferred on PRIMARY KEY S
E141-10 Names in a foreign key can be specified in any order (columns

should be in the proper order)
N

E151 Transaction support S
E151-01 COMMIT statement S
E151-02 ROLLBACK statement S
E152 Basic SET TRANSACTION statement S
E152-01 SET TRANSACTION statement: ISOLATION LEVEL SE-

RIALIZABLE clause
S

E152-02 SET TRANSACTION statement: READ ONLY and READ
WRITE clauses

N

E153 Updatable queries with subqueries S
E161 SQL comments using leading double minus S
E171 SQLSTATE support N
F021 Basic information schema N
F021-01 COLUMNS view
F021-02 TABLES view
F021-03 VIEWS view
F021-04 TABLE CONSTRAINTS view

Appendix A: SQL Features 250

F021-05 REFERENTIAL CONSTRAINTS view
F021-06 CHECK CONSTRAINTS view
F031 Basic schema manipulation S
F031-01 CREATE TABLE statement to create persistent base tables S
F031-02 CREATE VIEW statement S
F031-03 GRANT statement S
F031-04 ALTER TABLE statement: ADD COLUMN clause S
F031-13 DROP TABLE statement: RESTRICT clause S
F031-16 DROP VIEW statement: RESTRICT clause S
F031-19 REVOKE statement: RESTRICT clause S
F041 Basic joined table S
F041-01 Inner join (but not necessarily the INNER keyword) S
F041-02 INNER keyword S
F041-03 LEFT OUTER JOIN S
F041-04 RIGHT OUTER JOIN S
F041-05 Outer joins can be nested S
F041-07 The inner table in a left or right outer join can also be used

in an inner join
S

F041-08 All comparison operators are supported (rather than just =) S
F051 Basic date and time S
F051-01 DATE data type (including DATE literal) S
F051-02 TIME data type (including TIME literal) with fractional sec-

onds precision of 0
S

F051-03 TIMESTAMP data type (including TIMESTAMP literal)
with fractional seconds precision of 0 and 6

S

F051-04 Comparison predicate on DATE, TIME, and TIMESTAMP
data types

S

F051-05 Explicit CAST between datetime types and character types S
F051-06 CURRENT DATE S
F051-07 LOCALTIME S
F051-08 LOCALTIMESTAMP S
F081 UNION and EXCEPT in views S
F131 Grouped operations S
F131-01 WHERE, GROUP BY, and HAVING clauses supported in

queries with grouped views
S

F131-02 Multiple tables supported in queries with grouped views S
F131-03 Set functions supported in queries with grouped views S
F131-04 Subqueries with GROUP BY and HAVING clauses and

grouped views
S

F131-05 Single row SELECT with GROUP BY and HAVING clauses
and grouped views

S

F181 Multiple module support S (limited
support)

F201 CAST function S
F221 Explicit defaults S
F261 CASE expression S

Appendix A: SQL Features 251

F261-01 Simple CASE S
F261-02 Searched CASE N
F261 03 NULLIF S
F261-04 COALESCE S
F311 Schema definition statement S
F311-01 CREATE SCHEMA S
F311-02 CREATE TABLE for persistent base tables S
F311-03 CREATE VIEW S
F311-04 CREATE VIEW: WITH CHECK OPTION N
F311-05 GRANT statement S
F471 Scalar subquery values S
F481 Expanded NULL predicate S
F501 Features and conformance views N
F501-01 SQL FEATURES view
F501-02 SQL SIZING view
F501-03 SQL LANGUAGES view
F812 Basic flagging N
S011 Distinct data types S
S011-01 USER DEFINED TYPES view N
T321 Basic SQL-invoked routines S
T321-01 User-defined functions with no overloading S
T321-02 User-defined stored procedures with no overloading S
T321-03 Function invocation S
T321-04 CALL statement N
T321-05 RETURN statement S
T321-06 ROUTINES view N
T321-07 PARAMETERS view N

Appendix B: MAL Instruction Summary 252

Appendix B MAL Instruction Summary

The table below gives a condensed overview of the operations defined in each of the modules.
aggr.avg aggr.count no nil aggr.min aggr.size
aggr.cardinality aggr.histogram aggr.prod aggr.sum
aggr.count aggr.max aggr.product
alarm.alarm alarm.epoch alarm.time
alarm.ctime alarm.prelude alarm.timers
alarm.epilogue alarm.sleep alarm.usec
algebra.antijoin algebra.joinPath algebra.position algebra.sortReverseTail
algebra.bandjoin algebra.kdifference algebra.project algebra.sortTH
algebra.copy algebra.kintersect algebra.rangesplit algebra.sortTail
algebra.crossproduct algebra.kunion algebra.reuse algebra.split
algebra.difference algebra.kunique algebra.revert algebra.ssort
algebra.exist algebra.leftfetchjoin algebra.sample algebra.ssort rev
algebra.fetch algebra.leftjoin algebra.sdifference algebra.sunion
algebra.fetchjoin algebra.like algebra.select algebra.sunique
algebra.find algebra.markH algebra.selectH algebra.thetajoin
algebra.fragment algebra.markT algebra.selectNotNil algebra.topN
algebra.groupby algebra.mark grp algebra.semijoin algebra.tunique
algebra.hashjoin algebra.materialize algebra.sintersect algebra.uhashsplit
algebra.hashsplit algebra.merge algebra.slice algebra.union
algebra.indexjoin algebra.mergejoin algebra.sort algebra.unique
algebra.intersect algebra.number algebra.sortHT algebra.urangesplit
algebra.join algebra.outerjoin algebra.sortReverse algebra.uselect
array.grid array.print array.product array.project
bat.append bat.hasAppendMode bat.new bat.setHot
bat.delete bat.hasMoreElementsbat.newIterator bat.setKey
bat.flush bat.hasReadMode bat.order bat.setMemoryAdvise
bat.getAccess bat.hasWriteMode bat.orderReverse bat.setMemoryMap
bat.getAlpha bat.info bat.pack bat.setName
bat.getCapacity bat.inplace bat.reduce bat.setPersistent
bat.getDelta bat.insert bat.replace bat.setReadMode
bat.getHead bat.isCached bat.reverse bat.setRole
bat.getHeadType bat.isPersistent bat.revert bat.setSet
bat.getHeat bat.isSorted bat.save bat.setSorted
bat.getName bat.isSortedReverse bat.setAccess bat.setTransient
bat.getRole bat.isSynced bat.setAppendMode bat.setWriteMode
bat.getSequenceBase bat.isTransient bat.setBase bat.unload
bat.getSpaceReserved bat.isaKey bat.setCold bat.unpack
bat.getSpaceUsed bat.isaSet bat.setColumn
bat.getTail bat.load bat.setGarbage
bat.getTailType bat.mirror bat.setHash
batcalc.!= batcalc.and batcalc.like batcalc.str
batcalc.% batcalc.bit batcalc.lng batcalc.string
batcalc.* batcalc.bte batcalc.ltrim batcalc.substitute
batcalc.+ batcalc.chr batcalc.match batcalc.substring

Appendix B: MAL Instruction Summary 253

batcalc.++ batcalc.chrAt batcalc.nbytes batcalc.toLower
batcalc.- batcalc.dbl batcalc.not batcalc.toUpper
batcalc.– batcalc.endsWith batcalc.oid batcalc.trim
batcalc./ batcalc.flt batcalc.or batcalc.unicodeAt
batcalc.< batcalc.ifthen batcalc.r search batcalc.xml
batcalc.<= batcalc.ifthenelse batcalc.rtrim batcalc.xor
batcalc.== batcalc.int batcalc.search
batcalc.> batcalc.isnil batcalc.sht
batcalc.>= batcalc.length batcalc.startsWith
batcolor.blue batcolor.green batcolor.red batcolor.value
batcolor.cb batcolor.hsv batcolor.rgb
batcolor.color batcolor.hue batcolor.saturation
batcolor.cr batcolor.luminance batcolor.str
batmath.acos batmath.cos batmath.fmod batmath.sinh
batmath.asin batmath.cosh batmath.log batmath.sqrt
batmath.atan batmath.exp batmath.log10 batmath.tan
batmath.atan2 batmath.fabs batmath.pow batmath.tanh
batmath.ceil batmath.floor batmath.sin
batmtime.day batmtime.millisecondsbatmtime.seconds
batmtime.hours batmtime.month batmtime.year
bbp.bind bbp.getDirty bbp.getNames bbp.prelude
bbp.close bbp.getDiskSpace bbp.getObjects bbp.release
bbp.commit bbp.getHeadType bbp.getRNames bbp.releaseAll
bbp.deposit bbp.getHeat bbp.getRefCount bbp.take
bbp.destroy bbp.getKind bbp.getStatus bbp.toString
bbp.discard bbp.getLRefCount bbp.getTailType
bbp.find bbp.getLocation bbp.iterator
bbp.getCount bbp.getName bbp.open
blob.blob blob.prelude blob.tostring
blob.nitems blob.toblob
box.close box.discard box.open box.take
box.deposit box.getBoxNames box.release box.toString
box.destroy box.iterator box.releaseAll
bpm.adapt bpm.fold bpm.mapNxt bpm.rangePartition
bpm.addPartition bpm.garbage bpm.mapPrv bpm.rangePartitionSort
bpm.close bpm.getDimension bpm.mapThghDbl bpm.replace
bpm.count bpm.getNames bpm.mapThghLng bpm.saveCatalog
bpm.delete bpm.getNumberOfPartitionsbpm.mapTlowDbl bpm.select
bpm.deposit bpm.hasMoreElementsbpm.mapTlowLng bpm.sortPartitions
bpm.derivePartition bpm.hashPartition bpm.new bpm.sortTail
bpm.destroy bpm.hashPartitions bpm.newIterator bpm.splitquant
bpm.discard bpm.insert bpm.open bpm.take
bpm.dump bpm.mapAlias bpm.partition bpm.unfold
bpm.emptySet bpm.mapBid bpm.pieces
bpm.epilogue bpm.mapName bpm.prelude
bstream.create bstream.destroy bstream.read
calc.!= calc.abs calc.getBATidentifier calc.or

Appendix B: MAL Instruction Summary 254

calc.% calc.and calc.ifthenelse calc.ptr
calc.* calc.bat calc.int calc.setoid
calc.+ calc.between calc.inv calc.sht
calc.- calc.bit calc.isnil calc.sqlblob
calc./ calc.blob calc.isnotnil calc.str
calc.< calc.bte calc.length calc.timestamp
calc.<< calc.chr calc.lng calc.void
calc.<= calc.date calc.max calc.xml
calc.== calc.daytime calc.min calc.xor
calc.> calc.dbl calc.newoid
calc.>= calc.flt calc.not
calc.>> calc.getBAT calc.oid
clients.addScenario clients.getActions clients.getTime clients.setListing
clients.addUser clients.getId clients.getUsers clients.setPassword
clients.changePassword clients.getInfo clients.quit clients.setScenario
clients.changeUsername clients.getLastCommandclients.removeScenarioclients.shutdown
clients.checkPermission clients.getLogins clients.removeUser clients.suspend
clients.exit clients.getScenario clients.setHistory clients.wakeup
color.blue color.green color.print color.saturation
color.cb color.hsv color.printf color.str
color.color color.hue color.red color.value
color.cr color.luminance color.rgb color.ycc
const.close const.epiloque const.prelude const.toString
const.deposit const.hasMoreElementsconst.release
const.destroy const.newIterator const.releaseAll
const.discard const.open const.take
constraints.emptySet
crackers.DeleteMap crackers.dselect crackers.joinselect crackers.sizeCrackerDeletions
crackers.InsertAVLIndexcrackers.extendCrackerBATcrackers.joinuselect crackers.sizeCrackerInsertions
crackers.buildAVLIndex crackers.extendCrackerMapcrackers.printAVLTree intcrackers.sizePendingInsertions
crackers.crackOrdered crackers.getCrackerBATcrackers.printCrackerBATcrackers.tselect
crackers.crackOrdered validatecrackers.hselect crackers.printCrackerDeletionscrackers.uselect
crackers.crackUnordered validatecrackers.insert crackers.printCrackerIndexBATpartcrackers.verifyCrackerIndex
crackers.deleteAVL crackers.insertionsBForcecrackers.printCrackerInsertionscrackers.zcrackOrdered
crackers.deletionsOnNeedcrackers.insertionsBOnNeedcrackers.printPendingInsertionscrackers.zcrackOrdered validate
crackers.deletionsOnNeedGraduallycrackers.insertionsBOnNeedGraduallycrackers.project crackers.zcrackUnordered
crackers.deletionsOnNeedGraduallyRipplecrackers.insertionsBOnNeedGraduallyRipplecrackers.projectH crackers.zcrackUnordered validate
crackers.djoinselect crackers.insertionsForgetcrackers.select
crackers.dproject crackers.insertionsPartiallyForgetcrackers.selectAVL
date.!= date.<= date.> date.date
date.< date.== date.>= date.isnil
daytime.!= daytime.<= daytime.> daytime.isnil
daytime.< daytime.== daytime.>=
factory.getArrival factory.getDeparture factory.getPlants
factory.getCaller factory.getOwners factory.shutdown
group.avg group.max group.prelude group.size
group.count group.min group.refine group.sum

Appendix B: MAL Instruction Summary 255

group.derive group.new group.refine reverse
inet.!= inet.> inet.host inet.new
inet.< inet.>= inet.hostmask inet.setmasklen
inet.<< inet.>> inet.isnil inet.text
inet.<<= inet.>>= inet.masklen
inet.<= inet.abbrev inet.netmask
inet.= inet.broadcast inet.network
inspect.getAddress inspect.getComment inspect.getModule inspect.getStatistics
inspect.getAddresses inspect.getDefinition inspect.getSignature inspect.getType
inspect.getAtomNames inspect.getEnvironmentinspect.getSignatures inspect.getTypeIndex
inspect.getAtomSizes inspect.getFunction inspect.getSize inspect.getTypeName
inspect.getAtomSuper inspect.getKind inspect.getSource
io.export io.print io.prompt io.stdout
io.ftable io.printf io.stderr io.table
io.import io.printft io.stdin
language.assert language.dataflow language.raise
language.assertSpace language.newRange language.register
language.call language.nextElementlanguage.source
lock.create lock.set lock.try
lock.destroy lock.tostr lock.unset
mal.multiplex
manual.completion manual.help manual.search manual.summary
manual.createXML manual.index manual.section
mat.hasMoreElements mat.new mat.pack
mat.info mat.newIterator mat.print
mdb.List mdb.getException mdb.list mdb.setMemory
mdb.collect mdb.getReason mdb.listMapi mdb.setTimer
mdb.dot mdb.getStackDepth mdb.setBigfoot mdb.setTrace
mdb.dump mdb.getStackFrame mdb.setCatch mdb.start
mdb.getContext mdb.getStackTrace mdb.setDebug mdb.stop
mdb.getDebug mdb.grab mdb.setFlow mdb.var
mdb.getDefinition mdb.inspect mdb.setIO
mkey.bulk rotate xor hashmkey.hash mkey.rotate
mmath.acos mmath.exp mmath.log mmath.sinh
mmath.asin mmath.fabs mmath.log10 mmath.sqrt
mmath.atan mmath.finite mmath.pi mmath.srand
mmath.atan2 mmath.floor mmath.pow mmath.tan
mmath.ceil mmath.fmod mmath.rand mmath.tanh
mmath.cos mmath.isinf mmath.round
mmath.cosh mmath.isnan mmath.sin
mserver.bind mserver.fetch field arraymserver.listen ssl mserver.query handle
mserver.connect mserver.fetch line mserver.lookup mserver.reconnect
mserver.connect ssl mserver.fetch reset mserver.malclient mserver.resume
mserver.destroy mserver.fetch row mserver.next result mserver.rpc
mserver.disconnect mserver.finish mserver.ping mserver.setAlias
mserver.error mserver.getError mserver.prepare mserver.stop
mserver.explain mserver.get field countmserver.put mserver.suspend

Appendix B: MAL Instruction Summary 256

mserver.fetch all rows mserver.get row countmserver.query mserver.trace
mserver.fetch field mserver.listen mserver.query array
mtime.add mtime.dayname mtime.month mtime.time sub sec interval
mtime.adddays mtime.daynum mtime.monthname mtime.time synonyms
mtime.addmonths mtime.dayofweek mtime.monthnum mtime.timestamp
mtime.addyears mtime.dayofyear mtime.msec mtime.timestamp add month interval
mtime.compute mtime.daytime mtime.msecs mtime.timestamp add sec interval
mtime.current date mtime.diff mtime.olddate mtime.timestamp sub month interval
mtime.current time mtime.dst mtime.oldduration mtime.timestamp sub sec interval
mtime.current timestampmtime.end dst mtime.prelude mtime.timezone
mtime.date mtime.epilogue mtime.rule mtime.timezone local
mtime.date add month intervalmtime.hours mtime.seconds mtime.weekday
mtime.date add sec intervalmtime.local timezonemtime.setTimezone mtime.weekofyear
mtime.date sub sec intervalmtime.milliseconds mtime.start dst mtime.year
mtime.day mtime.minutes mtime.time add sec interval
optimizer.accessmode optimizer.dumpQEP optimizer.macro optimizer.reduce
optimizer.accumulators optimizer.emptySet optimizer.mergetable optimizer.remap
optimizer.aliases optimizer.evaluate optimizer.multiplex optimizer.remoteQueries
optimizer.clrDebug optimizer.factorize optimizer.optimize optimizer.setDebug
optimizer.coercions optimizer.garbageCollectoroptimizer.orcam optimizer.showFlowGraph
optimizer.commonTermsoptimizer.heuristics optimizer.partitions optimizer.showPlan
optimizer.costModel optimizer.inline optimizer.peephole optimizer.singleton
optimizer.crack optimizer.joinPath optimizer.prelude optimizer.strengthReduction
optimizer.deadcode optimizer.joinselect optimizer.pushranges optimizer.trace
pcre.compile pcre.patindex pcre.replace
pcre.like pcre.pcre quote pcre.select
pcre.match pcre.prelude pcre.uselect
pqueue.dequeue max pqueue.enqueue min pqueue.topn min
pqueue.dequeue min pqueue.init pqueue.topreplace max
pqueue.enqueue max pqueue.topn max pqueue.topreplace min
profiler.activate profiler.dumpTrace profiler.reset profiler.setStartPoint
profiler.cleanup profiler.getEvent profiler.setAll profiler.start
profiler.closeStream profiler.getTrace profiler.setEndPoint profiler.stop
profiler.clrFilter profiler.noop profiler.setFilter
profiler.deactivate profiler.openStream profiler.setNone
scheduler.choice scheduler.isolation scheduler.volumeCost
scheduler.costPredictionscheduler.pick
sema.create sema.destroy sema.down sema.up
sqlblob.sqlblob
statistics.close statistics.forceUpdatestatistics.getObjects statistics.release
statistics.deposit statistics.getCount statistics.getSize statistics.releaseAll
statistics.destroy statistics.getHistogramstatistics.hasMoreElementsstatistics.take
statistics.discard statistics.getHotset statistics.newIterator statistics.toString
statistics.dump statistics.getMax statistics.open statistics.update
statistics.epilogue statistics.getMin statistics.prelude
status.batStatistics status.getThreads status.mem cursize status.vm maxsize
status.cpuStatistics status.ioStatistics status.mem maxsize

Appendix B: MAL Instruction Summary 257

status.getDatabases status.memStatistics status.vmStatistics
status.getPorts status.memUsage status.vm cursize
str.+ str.length str.rtrim str.substitute
str.STRepilogue str.like str.search str.substring
str.STRprelude str.locate str.space str.suffix
str.ascii str.ltrim str.startsWith str.toLower
str.chrAt str.nbytes str.str str.toUpper
str.codeset str.prefix str.string str.trim
str.endsWith str.r search str.stringleft str.unicode
str.iconv str.repeat str.stringlength str.unicodeAt
str.insert str.replace str.stringright
streams.blocked streams.openReadBytesstreams.readStr streams.socketWriteBytes
streams.close streams.openWrite streams.socketRead streams.writeInt
streams.flush streams.openWriteBytesstreams.socketReadBytesstreams.writeStr
streams.openRead streams.readInt streams.socketWrite
tablet.display tablet.input tablet.setBracket tablet.setPivot
tablet.dump tablet.lastPage tablet.setColumn tablet.setPosition
tablet.finish tablet.load tablet.setDecimal tablet.setProperties
tablet.firstPage tablet.nextPage tablet.setDelimiter tablet.setRowBracket
tablet.getPage tablet.output tablet.setFormat tablet.setStream
tablet.getPageCnt tablet.page tablet.setName tablet.setTableBracket
tablet.header tablet.prevPage tablet.setNull tablet.setWidth
timestamp.!= timestamp.== timestamp.epoch
timestamp.< timestamp.> timestamp.isnil
timestamp.<= timestamp.>= timestamp.unix epoch
timezone.str timezone.timestamp
transaction.abort transaction.clean transaction.delta transaction.subcommit
transaction.alpha transaction.commit transaction.prev transaction.sync
unix.getenv unix.setenv
url.getAnchor url.getDomain url.getProtocol url.isaURL
url.getBasename url.getExtension url.getQuery url.new
url.getContent url.getFile url.getQueryArg url.url
url.getContext url.getHost url.getRobotURL
url.getDirectory url.getPort url.getUser
user.main
xml.agg xml.document xml.parse xml.str
xml.attribute xml.element xml.pi xml.tag
xml.comment xml.forest xml.prelude xml.text
xml.concat xml.isdocument xml.root xml.xml
xml.content xml.options xml.serialize xml.xquery
zrule.define

Appendix C: MAL Instruction Help 258

Appendix C MAL Instruction Help

The table below summarizes the commentary lines encountered in the system associated
with a MAL kernel modules.

aggr.avg Grouped tail average on dbl
aggr.cardinality Return the cardinality of the BAT tail values.
aggr.count Grouped count
aggr.count no nil Return the number of elements currently in a BAT ignoring

BUNs with nil-tail
aggr.histogram Produce a BAT containing the histogram over the tail

values.
aggr.max Give the highest tail value.
aggr.min Give the lowest tail value.
aggr.prod Gives the product of all tail values.
aggr.product Product over grouped tail on dbl
aggr.size Grouped count of true values
aggr.sum Grouped tail sum on dbl
alarm.alarm execute action in X secs
alarm.ctime current time as a string
alarm.epilogue Finalize alarm module
alarm.epoch current time as unix epoch
alarm.prelude Initialize alarm module
alarm.sleep sleep X secs
alarm.time time in millisecs
alarm.timers give a list of all active timers
alarm.usec return cpu microseconds info
algebra.antijoin Returns the antijoin
algebra.bandjoin This is a join() for which the predicate is that two BUNs

match if the left-tail value is within the range [right-head
- minus, right-head + plus]. Works only for the builtin
numerical types, and their derivates.

algebra.copy Returns physical copy of a BAT.
algebra.crossproduct Returns the cross product
algebra.difference
algebra.exist Returns true when ’h,t’ occurs as a bun in b.
algebra.fetch Returns a positional selection of b by the oid head values

of s
algebra.fetchjoin Hook directly into the fetch implementation of the join.
algebra.find Returns the tail value ’t’ for which some [h,t] BUN exists

in b. If no such BUN exists, an error occurs.
algebra.fragment Select both on head and tail range.
algebra.groupby Produces a new BAT with groups identified by the head

column. The result contains tail times the head value, ie
the tail contains the result group sizes.

algebra.hashjoin Hook directly into the hash implementation of the join.

Appendix C: MAL Instruction Help 259

algebra.hashsplit Split a BAT on tail column according (hash-value MOD
buckets). Returns a recursive BAT, containing the frag-
ments in the tail, their bucket number in the head.

algebra.indexjoin Hook directly into the index implementation of the join.
algebra.intersect
algebra.join Returns all BUNs, consisting of a head-value from ’left’

and a tail-value from ’right’ for which there are BUNs in
’left’ and ’right’ with equal tail- resp. head-value (i.e. the
join columns are projected out).

algebra.joinPath internal routine to handle join paths. The type analysis is
rather tricky.

algebra.kdifference Returns the difference taken over only the *head*
columns of two BATs. Results in all BUNs of
’left’ that are *not* in ’right’. It does *not* do
double-elimination over the ’left’ BUNs. If you want
this, use: ’kdifference(left.kunique,right.kunique)’ or:
’kdifference(left,right).kunique’.

algebra.kintersect Returns the intersection taken over only the *head*
columns of two BATs. Results in all BUNs of ’left’
that are also in ’right’. Does *not* do double-
elimination over the ’left’ BUNs. If you want
this, use: ’kintersect(kunique(left),kunique(right))’ or:
’kunique(kintersect(left,right))’.

algebra.kunion Returns the union of two BATs; looking at head-columns
only. Results in all BUNs of ’left’ that are not in ’right’,
plus all BUNs of ’right’. *no* double-elimination is done.
If you want this, do: ’kunion(left.kunique,right.kunique)’
or: ’sunion(left,right).kunique’.

algebra.kunique Select unique tuples from the input BAT. Double elimina-
tion is done only looking at the head column. The result
is a BAT with property hkeyed() == true.

algebra.leftfetchjoin Hook directly into the left fetch join implementation.
algebra.leftjoin
algebra.like Selects all elements that have ’substr’ as in the tail.
algebra.markH Produces a new BAT with fresh unique dense se-

quense of OIDs in the head that starts at base (i.e.
[base,..base+b.count()-1]).

algebra.markT Produces a BAT with fresh unique OIDs in the tail starting
at 0.

algebra.mark grp "grouped mark": Produces a new BAT with per group a
locally unique dense ascending sequense of OIDs in the tail.
The tail of the first BAT (b) identifies the group that each
BUN of b belongs to. The second BAT (g) represents the
group extend, i.e., the head is the unique list of group IDs
from b’s tail. The third argument (s) gives the base value
for the new OID sequence of each group.

Appendix C: MAL Instruction Help 260

algebra.materialize Materialize the void column
algebra.merge Merge head and tail into a single value
algebra.mergejoin Hook directly into the merge implementation of the join.
algebra.number Produces a new BAT with identical head column, and con-

secutively increasing integers (start at 0) in the tail column.
algebra.outerjoin Returns all the result of a join, plus the BUNS formed NIL

in the tail and the head-values of ’outer’ whose tail-value
does not match an head-value in ’inner’.

algebra.position Returns the position of the value pair It returns an error if
’val’ does not exist.

algebra.project Fill the tail column with a constant.
algebra.rangesplit Split a BAT on tail column in ’ranges’ equally sized con-

secutive ranges. Returns a recursive BAT, containing the
fragments in the tail, the higher-bound of the range in the
head. The higher bound of the last range is ’nil’.

algebra.reuse Reuse a temporary BAT if you can. Otherwise, allocate
enough storage to accept result of an operation (not in-
volving the heap)

algebra.revert Returns a BAT copy with buns in reverse order
algebra.sample Produce a random selection of size ’num’ from the input

BAT.
algebra.sdifference Returns the difference taken over *both* columns of two

BATs. Results in all BUNs of ’left’ that are *not* in ’right’.
Does *not* do double-elimination over the ’left’ BUNs. If
you want this, use: ’sdifference(left.sunique,right.sunique)’
or: ’sdifference(left,right).sunique’.

algebra.select Select all BUNs of a BAT with a certain tail value. Selec-
tion on NIL is also possible (it should be properly casted,
e.g.:int(nil)).

algebra.selectH
algebra.selectNotNil Select all not-nil values
algebra.semijoin Returns the intersection taken over only the *head*

columns of two BATs. Results in all BUNs of ’left’
that are also in ’right’. Does *not* do double-
elimination over the ’left’ BUNs. If you want
this, use: ’kintersect(kunique(left),kunique(right))’ or:
’kunique(kintersect(left,right))’.

algebra.sintersect Returns the intersection taken over *both* columns
of two BATs. Results in all BUNs of ’left’
that are also in ’right’. Does *not* do double-
elimination over the ’left’ BUNs, If you want this,
use: ’sintersect(sunique(left),sunique(right))’ or:
’sunique(sintersect(left,right))’.

algebra.slice Return the slice with the BUNs at position x till y.
algebra.sort Returns a BAT copy sorted on the head column.
algebra.sortHT Returns a lexicographically sorted copy on head,tail.

Appendix C: MAL Instruction Help 261

algebra.sortReverse Returns a BAT copy reversely sorted on the tail column.
algebra.sortReverseTail Returns a BAT copy reversely sorted on the tail column.
algebra.sortTH Returns a lexicographically sorted copy on tail,head.
algebra.sortTail Returns a BAT copy sorted on the tail column.
algebra.split Split head into two values
algebra.ssort Returns copy of a BAT with the BUNs sorted on ascending

head values. This is a stable sort.
algebra.ssort rev Returns copy of a BAT with the BUNs sorted on descend-

ing head values. This is a stable sort.
algebra.sunion Returns the union of two BATs; looking at both

columns of both BATs. Results in all BUNs of
’left’ that are not in ’right’, plus all BUNs of
’right’. *no* double-elimination is done. If you
want this, do: ’sunion(left.sunique,right.sunique)’ or:
’sunion(left,right).sunique’.

algebra.sunique Select unique tuples from the input BAT. Double elimina-
tion is done over BUNs as a whole (head and tail). Result
is a BAT with real set() semantics.

algebra.thetajoin Theta join on for ’mode’ in LE, LT, EQ, GT, GE .
JOIN EQ is just the same as join(). All other options
do merge algorithms. Either using the fact that they are
ordered() already (left on tail, right on head), or by us-
ing/creating binary search trees on the join columns.

algebra.topN Trim all but the top N tuples.
algebra.tunique Select unique tuples from the input BAT. Double elimina-

tion is done over the BUNs tail. The result is a BAT with
property tkeyd()== true

algebra.uhashsplit Same as hashsplit, but only collect the head values in the
fragments

algebra.union
algebra.unique
algebra.urangesplit Same as rangesplit, but only collect the head values in the

fragments
algebra.uselect Value select, but returning only the head values. SEE

ALSO:select(bat,val)
array.grid Fills an index BAT, (grpcount,grpsize,clustersize,offset)

and shift all elemenets with a factor s
array.print Prints an array, using 1 value bat and N aligned index bats
array.product Produce an array product
array.project Fill an array representation with constants
bat.append append the value u to i
bat.delete Delete from the first BAT all BUNs with a corresponding

BUN in the second.
bat.flush Designate a BAT as not needed anymore
bat.getAccess return the access mode attached to this BAT as a character.
bat.getAlpha Obtain the list of BUNs added

Appendix C: MAL Instruction Help 262

bat.getCapacity Returns the current allocation size (in max number of ele-
ments) of a BAT.

bat.getDelta Obtain the list of BUNs deleted
bat.getHead return the BUN head value using the cursor.
bat.getHeadType Returns the type of the head column of a BAT, as an in-

teger type number.
bat.getHeat Return the current BBP heat (LRU stamp)
bat.getName Gives back the logical name of a BAT.
bat.getRole Returns the rolename of the head column of a BAT.
bat.getSequenceBase Get the sequence base for the void column of a BAT.
bat.getSpaceReserved Determine the total space (in bytes) reserved for a BAT.
bat.getSpaceUsed Determine the total space (in bytes) occupied by a BAT.
bat.getTail return the BUN tail value using the cursor.
bat.getTailType Returns the type of the tail column of a BAT, as an integer

type number.
bat.hasAppendMode return true if to this BAT is append only.
bat.hasMoreElements Produce the next bun for processing.
bat.hasReadMode return true if to this BAT is read only.
bat.hasWriteMode return true if to this BAT is read and write.
bat.info Produce a BAT containing info about a BAT in [at-

tribute,value] format. It contains all properties of the BAT
record. See the BAT documentation in GDK for more
information.

bat.inplace inplace replace values on the given locations
bat.insert Insert one BUN[h,t] in a BAT.
bat.isCached Bat is stored in main memory.
bat.isPersistent
bat.isSorted Returns whether a BAT is ordered on head or not.
bat.isSortedReverse Returns whether a BAT is ordered on head or not.
bat.isSynced Tests whether two BATs are synced or not.
bat.isTransient
bat.isaKey return whether the head column of a BAT is unique (key).
bat.isaSet return whether the BAT mode is set to unique.
bat.load Load a particular BAT from disk
bat.mirror Returns the head-mirror image of a BAT (two head

columns).
bat.new Localize a bat by name and produce a variant
bat.newIterator Process the buns one by one extracted from a void table.
bat.order Sorts the BAT itself on the head, in place.
bat.orderReverse Reverse sorts the BAT itself on the head, in place.
bat.pack Pack a pair into a BAT
bat.reduce Designate a BAT for which auxillary structures can be

dropped
bat.replace Replace the tail value of one BUN that has some head

value.

Appendix C: MAL Instruction Help 263

bat.reverse Returns the reverse view of a BAT (head is tail and tail is
head). BEWARE no copying is involved; input and output
refer to the same object!

bat.revert Puts all BUNs in a BAT in reverse order. (Belongs to the
BAT sequence module)

bat.save Save a BAT to storage, if it was loaded and dirty. Returns
whether IO was necessary. Please realize that calling this
function violates the atomic commit protocol!!

bat.setAccess Try to change the update access priviliges to this BAT.
Mode: r[ead-only] - allow only read access. a[append-only]
- allow reads and update. w[riteable] - allow all opera-
tions. BATs are updatable by default. On making a BAT
read-only, all subsequent updates fail with an error mes-
sage.Returns the BAT itself.

bat.setAppendMode Change access privilige of BAT to append only
bat.setBase Give the non-empty BATs consecutive oid bases
bat.setCold Makes a BAT very cold for the BBP. The chance of being

choses for swapout is big, afterwards.
bat.setColumn Give both columns of a BAT a new name.
bat.setGarbage Designate a BAT as garbage
bat.setHash
bat.setHot Makes a BAT very hot for the BBP. The chance of being

chosen for swapout is small, afterwards.
bat.setKey Sets the ’key’ property of the head column to ’mode’. In

’key’ mode, the kernel will silently block insertions that
cause a duplicate entries in the head column. KNOWN
BUG:when ’key’ is set to TRUE, this function does not
automatically eliminate duplicates. Use b := b.kunique;

bat.setMemoryAdvise alias for madvise(b,mode,mode,mode, mode,mode)
bat.setMemoryMap Alias for mmap(b,mode,mode,mode, mode,mode)
bat.setName Give a logical name to a BAT.
bat.setPersistent Make the BAT persistent. Returns boolean which indicates

if the BAT administration has indeed changed.
bat.setReadMode Change access privilige of BAT to read only
bat.setRole Give a logical name to the columns of a BAT.
bat.setSet Sets the ’set’ property on this BAT to ’mode’. In ’set’

mode, the kernel will silently block insertions that cause
a duplicate BUN [head,tail] entries in the BAT. KNOWN
BUG:when ’set’ is set to TRUE, this function does not
automatically eliminate duplicates. Use b := b.sunique;
Returns the BAT itself.

bat.setSorted Assure BAT is ordered on the head.
bat.setTransient Make the BAT transient. Returns boolean which indicates

if the BAT administration has indeed changed.
bat.setWriteMode Change access privilige of BAT to read and write

Appendix C: MAL Instruction Help 264

bat.unload Swapout a BAT to disk. Transient BATs can also
be swapped out. Returns whether the unload indeed
happened.

bat.unpack Extract the first tuple from a bat
batcalc.!= Equate a bat of strings against a singleton
batcalc.% Binary BAT calculator function with new BAT result
batcalc.* Binary BAT calculator function with new BAT result
batcalc.+ Concatenate two strings.
batcalc.++ Unary minus over the tail of the bat
batcalc.- Unary minus over the tail of the bat
batcalc.– Unary minus over the tail of the bat
batcalc./ Binary BAT calculator function with new BAT result
batcalc.< Compare a bat of timestamp against a singleton
batcalc.<= Compare a bat of timestamp against a singleton
batcalc.== Equate a bat of strings against a singleton
batcalc.> Compare a bat of timestamp against a singleton
batcalc.>= Compare a bat of timestamp against a singleton
batcalc.and Binary BAT calculator function with new BAT result
batcalc.bit Coerce an str tail to a bat with bit tail.
batcalc.bte Coerce an bit tail to a bat with bte tail.
batcalc.chr
batcalc.chrAt String array lookup operation.
batcalc.dbl Coerce an flt tail to a bat with dbl tail.
batcalc.endsWith Suffix check.
batcalc.flt Coerce an dbl tail to a bat with flt tail.
batcalc.ifthen Ifthen operation to assemble a conditional result
batcalc.ifthenelse If-then-else operation to assemble a conditional result
batcalc.int Coerce an str tail to a bat with int tail.
batcalc.isnil Unary check for nil over the tail of the bat
batcalc.length Return the length of a string.
batcalc.like Perform SQL like operation against a string bat
batcalc.lng Coerce an bit tail to a bat with lng tail.
batcalc.ltrim Strip whitespaces from start of a string.
batcalc.match POSIX pattern matching against a string BAT
batcalc.nbytes Return the string length in bytes.
batcalc.not Return a BAT with the negated tail
batcalc.oid Coerce an lng tail to a bat with oid tail.
batcalc.or Binary BAT calculator function with new BAT result
batcalc.r search Reverse search for a substring. Returns position, -1 if not

found.
batcalc.rtrim Strip whitespaces from end of a string.
batcalc.search Search for a substring. Returns position, -1 if not found.
batcalc.sht Coerce an bit tail to a bat with sht tail.
batcalc.startsWith Prefix check.
batcalc.str
batcalc.string Return the tail s[offset..n] of a string s[0..n].

Appendix C: MAL Instruction Help 265

batcalc.substitute Substitute first occurrence of ’src’ by ’dst’. Iff repeated =
true this is repeated while ’src’ can be found in the result
string. In order to prevent recursion and result strings
of unlimited size, repeating is only done iff src is not a
substring of dst.

batcalc.substring Substring extraction using [start,start+length]
batcalc.toLower Convert a string to lower case.
batcalc.toUpper Convert a string to upper case.
batcalc.trim Strip whitespaces around a string.
batcalc.unicodeAt get a unicode character (as an int) from a string position.
batcalc.xml
batcalc.xor Binary BAT calculator function with new BAT result
batcolor.blue Extracts blue component from a color atom
batcolor.cb Extracts Cb(blue color) component from a color atom
batcolor.color Converts string to color
batcolor.cr Extracts Cr(red color) component from a color atom
batcolor.green Extracts green component from a color atom
batcolor.hsv Converts an HSV triplets to a color atom
batcolor.hue Extracts hue component from a color atom
batcolor.luminance Extracts Y(luminance) component from a color atom
batcolor.red Extracts red component from a color atom
batcolor.rgb Converts an RGB triplets to a color atom
batcolor.saturation Extracts saturation component from a color atom
batcolor.str Identity mapping for string bats
batcolor.value Extracts value component from a color atom
batmath.acos
batmath.asin
batmath.atan
batmath.atan2
batmath.ceil
batmath.cos
batmath.cosh
batmath.exp
batmath.fabs
batmath.floor
batmath.fmod
batmath.log
batmath.log10
batmath.pow
batmath.sin
batmath.sinh
batmath.sqrt
batmath.tan
batmath.tanh
batmtime.day
batmtime.hours

Appendix C: MAL Instruction Help 266

batmtime.milliseconds
batmtime.month
batmtime.seconds
batmtime.year
bbp.bind Locate the BAT using its logical name
bbp.close Close the bbp box.
bbp.commit Commit updates for this client
bbp.deposit Relate a logical name to a physical BAT in the buffer pool.
bbp.destroy Schedule a BAT for removal at session end or immediately
bbp.discard Remove the BAT from the box
bbp.find Locate the BAT using its BBP index in the BAT buffer

pool
bbp.getCount Create a BAT with the cardinalities of all known BATs
bbp.getDirty Create a BAT with the dirty/ diffs/clean status
bbp.getDiskSpace Estimate the amount of diskspace occupied by dbfarm
bbp.getHeadType Map a BAT into its head type
bbp.getHeat Create a BAT with the heat values
bbp.getKind Create a BAT with the persistency status
bbp.getLRefCount Utility for debugging MAL interpreter
bbp.getLocation Create a BAT with their disk locations
bbp.getName Map a BAT into its internal name
bbp.getNames Map BAT into its bbp name
bbp.getObjects View of the box content.
bbp.getRNames Map a BAT into its bbp physical name
bbp.getRefCount Utility for debugging MAL interpreter
bbp.getStatus Create a BAT with the disk/load status
bbp.getTailType Map a BAT into its tail type
bbp.iterator Locates the next element in the box
bbp.open Locate the bbp box and open it.
bbp.prelude Initialize the bbp box
bbp.release Remove the BAT from further consideration
bbp.releaseAll Commit updates for this client
bbp.take Load a particular bat
bbp.toString Get the string representation of an element in the box
blob.blob Noop routine.
blob.nitems get the number of bytes in this blob.
blob.prelude
blob.toblob store a string as a blob.
blob.tostring get the bytes from blob as a string, starting at byte ’index’

till the first 0 byte or the end of the blob.
box.close Close the box.
box.deposit Enter a new value into the box.
box.destroy Destroy the box.
box.discard Release the BAT from the client pool.
box.getBoxNames Retrieve the names of all boxes.
box.iterator Locates the next element in the box.

Appendix C: MAL Instruction Help 267

box.open Locate the box and open it.
box.release Release the BAT from the client pool.
box.releaseAll Release all objects for this client.
box.take Locates the typed value in the box.
box.toString Get the string representation of the i-th element in the box.
bpm.adapt Re-organize segment s using the selection (val1,val2) stored

in bat rs
bpm.addPartition Add a partition to a fragmented temporary table
bpm.close Save and close the BAT partition box
bpm.count
bpm.delete Delete elements from the BAT partitions
bpm.deposit Create a new partitioned BAT by name
bpm.derivePartition Create a derived fragmentation over the head using src.
bpm.destroy Destroy the BAT partition box
bpm.discard Release all partitioned BATs
bpm.dump Give the details of the partition tree
bpm.emptySet Implement the constraints test efficiently
bpm.epilogue
bpm.fold Collapse the partitioned BAT into a single BAT
bpm.garbage Remove a temporary partitioned table
bpm.getDimension Obtain the partition boundary values.
bpm.getNames Retrieve the names of all known partitioned BATs
bpm.getNumberOfPartitions Return the number of partitions known
bpm.hasMoreElements Localize the next partition for processing.
bpm.hashPartition Create a hash partition on a BAT
bpm.hashPartitions Ensure all partitions have a hash in the head
bpm.insert Insert elements into the BAT partitions
bpm.mapAlias
bpm.mapBid
bpm.mapName
bpm.mapNxt
bpm.mapPrv
bpm.mapThghDbl
bpm.mapThghLng
bpm.mapTlowDbl
bpm.mapTlowLng
bpm.new Create a temporary partitioned table
bpm.newIterator Create an iterator over the BAT partitions.
bpm.open Locate and open the BAT partition box
bpm.partition Split all partitions that cover the split value
bpm.pieces Count the number of partitions
bpm.prelude
bpm.rangePartition Create the partitions based on a range vector
bpm.rangePartitionSort Create the partitions based on a range vector
bpm.replace Replace the content of the BAT partitions
bpm.saveCatalog

Appendix C: MAL Instruction Help 268

bpm.select Partitioned based selection
bpm.sortPartitions Sort all partitions of alias b on the tail
bpm.sortTail Implement the sort on tail for partitioned BAT efficiently
bpm.splitquant Split all partitions to fit into a memory bound in KB
bpm.take Retrieve a single component of a partitioned BAT by index
bpm.unfold Unfold a BAT into a partitioned one
bstream.create create a buffered stream
bstream.destroy destroy bstream
bstream.read read at least size bytes into the buffer of s
calc.!= Equality of two timestamps
calc.%
calc.*
calc.+ Concatenate two strings
calc.- negative value
calc./
calc.< Equality of two timestamps
calc.<<
calc.<= Equality of two timestamps
calc.== Equality of two timestamps
calc.> Equality of two timestamps
calc.>= Equality of two timestamps
calc.>>
calc.abs absolute value
calc.and
calc.bat
calc.between
calc.bit coercion dbl to bit
calc.blob
calc.bte coercion lng to bte
calc.chr coercion lng to chr
calc.date
calc.daytime
calc.dbl coercion lng to dbl
calc.flt coercion lng to flt
calc.getBAT Coerce bat to BAT identifier
calc.getBATidentifier Coerce bat to BAT identifier
calc.ifthenelse
calc.int coercion dbl to int
calc.inv inverse value (1/x)
calc.isnil Nil test for timestamp value
calc.isnotnil is a value not equal to nil?
calc.length
calc.lng coercion dbl to lng
calc.max
calc.min
calc.newoid Reserves a range of consecutive unique OIDs; returns the

lowest in range. equivalent to newoid(0,incr)

Appendix C: MAL Instruction Help 269

calc.not
calc.oid coercion dbl to oid
calc.or
calc.ptr
calc.setoid Equivalent to setoid(1:oid).
calc.sht coercion dbl to sht
calc.sqlblob
calc.str coercion dbl to str
calc.timestamp
calc.void
calc.xml
calc.xor
clients.addScenario add the given scenario to the allowed scenarios for the given

user
clients.addUser Allow user with password access to the given scenarios
clients.changePassword Change the password for the current user
clients.changeUsername Change the username of the user into the new string
clients.checkPermission Check permission for a user
clients.exit Terminate the session for a single client using a soft error.
clients.getActions Pseudo bat of client’s command counts.
clients.getId Return a number that uniquely represents the current

client.
clients.getInfo Pseudo bat with client attributes.
clients.getLastCommand Pseudo bat of client’s last command time.
clients.getLogins Pseudo bat of client login time.
clients.getScenario Retrieve current scenario name.
clients.getTime Pseudo bat of client’s total time usage(in usec).
clients.getUsers return a BAT with user id and name available in the system

with access to the given scenario(s)
clients.quit Terminate the server. This command can only be initiated

from the console.
clients.removeScenario remove the given scenario from the allowed scenarios for

the given user
clients.removeUser Remove the given user from the system
clients.setHistory Designate console history file for readline.
clients.setListing Turn on/off echo of MAL instructions: 2 - show mal in-

struction, 4 - show details of type resolutoin, 8 - show
binding information.

clients.setPassword Set the password for the given user
clients.setScenario Switch to other scenario handler, return previous one.
clients.shutdown Close all client connections. If forced=false the clients are

moved into FINISHING mode, which means that the pro-
cess stops at the next cycle of the scenario. If forced=true
all client processes are immediately killed

Appendix C: MAL Instruction Help 270

clients.suspend Put a client process to sleep for some time. It will simple
sleep for a second at a time, until the awake bit has been
set in its descriptor

clients.wakeup Wakeup a client process
color.blue Extracts blue component from a color atom
color.cb Extracts Cb(blue color) component from a color atom
color.color Converts string to color
color.cr Extracts Cr(red color) component from a color atom
color.green Extracts green component from a color atom
color.hsv Converts an HSV triplets to a color atom
color.hue Extracts hue component from a color atom
color.luminance Extracts Y(luminance) component from a color atom
color.print
color.printf
color.red Extracts red component from a color atom
color.rgb Converts an RGB triplets to a color atom
color.saturation Extracts saturation component from a color atom
color.str Converts color to string
color.value Extracts value component from a color atom
color.ycc Converts an YCC triplets to a color atom
const.close Close the constant box
const.deposit Enter a new variable into the box
const.destroy Destroy the box
const.discard Release the const from the box
const.epiloque Cleanup the const box
const.hasMoreElements Locate next element in the box
const.newIterator Locate next element in the box
const.open Locate and open the constant box
const.prelude Initialize the const box
const.release Release a new constant value
const.releaseAll Release all variables in the box
const.take Take a variable out of the box
const.toString Get the string representation of an element in the box
constraints.emptySet Check if the bat is empty
crackers.DeleteMap Throw away a certain map
crackers.InsertAVLIndex Insert u in the AVL tree index of BAT b
crackers.buildAVLIndex Create an AVL tree index for this BAT
crackers.crackOrdered Break a BAT into three pieces with tail<mid, tail==mid,

tail>mid, respectively; maintaining the head-oid order
within each piece.

crackers.crackOrdered validate Validate whether a BAT is correctly broken into five
pieces with tail<low, tail==low, low<tail<hgh, tail==hgh,
tail>hgh, respectively; maintaining the head-oid order
within each piece.

Appendix C: MAL Instruction Help 271

crackers.crackUnordered validateValidate whether a BAT is correctly broken into five
pieces with tail<low, tail==low, low<tail<hgh, tail==hgh,
tail>hgh, respectively.

crackers.deleteAVL Delete a collection of values from the index
crackers.deletionsOnNeed Keep the deletions BAT separatelly and do a complete

merge only if a relevant query arrives in the future
crackers.deletionsOnNeedGraduallyKeep the deletions BAT separatelly and merge only what

is needed if a relevant query arrives in the future
crackers.deletionsOnNeedGraduallyRippleKeep the deletions BAT separatelly and merge only what is

needed using ripple if a relevant query arrives in the future
crackers.djoinselect Use the pivot. For each tuple in pivot with a 0, check if the

respective tuple (in the same position) in the tail of cpair
satisfies the range restriction. If yes mark the pivot BUN
as 1.

crackers.dproject Sync the cracking pair and project the tail. Use for dis-
junctive queries that require a larger bit vector

crackers.dselect Crack based on date and evaluate the date disjunctive pred-
icate outside the cracked area. Return a bit vector.

crackers.extendCrackerBAT Extend the cracker column by P positions
crackers.extendCrackerMap Extend the cracker map by P positions
crackers.getCrackerBAT Get the cracker BAT of b
crackers.hselect Retrieve the subset head using a cracker index producing

preferably a BATview.
crackers.insert Keep the insertions BAT separatelly and merge in the fu-

ture on demand with the Ripple
crackers.insertionsBForce Merge the insertions BAT with the cracker bat and update

the cracker index
crackers.insertionsBOnNeed Keep the insertions BAT separatelly and do a complete

merge only if a relevant query arrives in the future
crackers.insertionsBOnNeedGraduallyKeep the insertions BAT separatelly and merge only what

is needed if a relevant query arrives in the future
crackers.insertionsBOnNeedGraduallyRippleKeep the insertions BAT separatelly and merge only what

is needed using the ripple strategy if a relevant query ar-
rives in the future

crackers.insertionsForget Append c to the cracked BAT of b and completelly forget
the cracker index

crackers.insertionsPartiallyForgetAppend c to the cracked BAT of b and partially forget the
cracker index, i.e., forget only what is affected

crackers.joinselect Use the pivot. For each tuple in pivot with a 1, check if the
respective tuple (in the same position) in the tail of cpair
satisfies the range restriction. If not mark the pivot BUN
as 0.

Appendix C: MAL Instruction Help 272

crackers.joinuselect Join left and right on head-OIDs. From right, only those
BUNs qualify that satisfy the range-restriction on the tail.
If inPlace is TRUE (and left has an OID head and is
not a BAT-view), we operate in-place, overwriting left
and returning it as result. Otherwise, the result is a new
[:oid,:void] BAT. If isForeignKey is TRUE, we assume that
each tuple from left finds a match in right, and hence skip
the respective check. (NOTE: This may lead to CRASHES,
if isForeignKey is incorrectly passed as TRUE!)

crackers.printAVLTree int Print the AVL Tree of the cracker index (for debugging
purposes)

crackers.printCrackerBAT Print the cracker BAT of b
crackers.printCrackerDeletions Print the pending deletions of the cracker BAT of b
crackers.printCrackerIndexBATpartPrint the cracker index of b
crackers.printCrackerInsertions Print the pending insertions of the cracker BAT of b
crackers.printPendingInsertions Print the pending insertions
crackers.project Sync the cracking pair and project the tail
crackers.projectH Sync the cracking pair and project the head
crackers.select Retrieve the subset using a cracker index producing prefer-

ably a BATview.
crackers.selectAVL Retrieve the subset using the AVL index
crackers.sizeCrackerDeletions Get the size of the pending deletions of the cracker BAT of

b
crackers.sizeCrackerInsertions Get the size of the pending insertions of the cracker BAT

of b
crackers.sizePendingInsertions Get the size of the pending insertions for this map
crackers.tselect Retrieve the subset tail using a cracker index producing

preferably a BATview.
crackers.uselect Retrieve the subset using a cracker index producing prefer-

ably a BATview.
crackers.verifyCrackerIndex Check the cracker index and column, whether each value

is in the correct chunk
crackers.zcrackOrdered Break a BAT into three pieces with tail<=low,

low<tail<=hgh, tail>hgh, respectively; maintaining the
head-oid order within each piece.

crackers.zcrackOrdered validate Validate whether a BAT is correctly broken into three
pieces with tail<=low, low<tail<=hgh, tail>hgh, respec-
tively; maintaining the head-oid order within each piece.

crackers.zcrackUnordered Break a BAT into three pieces with tail<=low,
low<tail<=hgh, tail>hgh, respectively.

crackers.zcrackUnordered validateValidate whether a BAT is correctly broken into
three pieces with tail<=low, low<tail<=hgh, tail>hgh,
respectively.

date.!= Equality of two dates
date.< Equality of two dates
date.<= Equality of two dates

Appendix C: MAL Instruction Help 273

date.== Equality of two dates
date.> Equality of two dates
date.>= Equality of two dates
date.date Noop routine.
date.isnil Nil test for date value
daytime.!= Equality of two daytimes
daytime.< Equality of two daytimes
daytime.<= Equality of two daytimes
daytime.== Equality of two daytimes
daytime.> Equality of two daytimes
daytime.>= Equality of two daytimes
daytime.isnil Nil test for daytime value
factory.getArrival Retrieve the time stamp the last call was made
factory.getCaller Retrieve the unique identity of the factory caller
factory.getDeparture Retrieve the time stamp the last answer was returned
factory.getOwners Retrieve the factory owners table
factory.getPlants Retrieve the names for all active factories
factory.shutdown Close a factory
group.avg grouped tail average
group.count Grouped count
group.derive Cross tabulation group extension step. Returned head val-

ues are identical as in ’ct’. Tail values are from the same
domain and indicate further refinement of the groups in
’ct’, taking into account also the tail-values in ’attr’.

group.max Select the minimum element of each group
group.min Select the minimum element of each group
group.new Cross tabulation group initialization like GRPgroup, but

with user provided #bits in hashmask and #distinct values
in range.

group.prelude
group.refine refine the ordering of a tail-ordered BAT by sub-ordering

on the values of a second bat ’a’ (where the heads of a and
b match 1-1). The effect of this is similar to (hash-based)
GRPderive, with the distinction that the group ids respect
the ordering of the group values.

group.refine reverse refine the ordering of a tail-ordered BAT by sub-ordering
on the values of a second bat ’a’ (where the heads of a and
b match 1-1). The effect of this is similar to (hash-based)
GRPderive, with the distinction that the group ids respect
the ordering of the group values.

group.size Grouped count of true values
group.sum Tail sum of groups of a sliding window of fixed size
inet.!= Inequality of two inets
inet.< Whether v is less than w
inet.<< Whether v is contained within w
inet.<<= Whether v is contained within or is equal to w

Appendix C: MAL Instruction Help 274

inet.<= Whether v is less than or equal to w
inet.= Equality of two inets
inet.> Whether v is greater than w
inet.>= Whether v is equal to or greater than w
inet.>> Whether v contains w
inet.>>= Whether v contains or is equal to w
inet.abbrev Abbreviated display format as text
inet.broadcast Returns the broadcast address for network
inet.host Extract IP address as text
inet.hostmask Construct host mask for network
inet.isnil Nil test for inet value
inet.masklen Extract netmask length
inet.netmask Construct netmask for network
inet.network Extract network part of address
inet.new Create an inet from a string literal
inet.setmasklen Set netmask length for inet value
inet.text Extract IP address and netmask length as text
inspect.getAddress Returns the function signature(s).
inspect.getAddresses Obtain the function address.
inspect.getAtomNames Collect a BAT with the atom names.
inspect.getAtomSizes Collect a BAT with the atom sizes.
inspect.getAtomSuper Collect a BAT with the atom names.
inspect.getComment Returns the function help information.
inspect.getDefinition Returns a string representation of a specific function.
inspect.getEnvironment Collect the environment variables.
inspect.getFunction Obtain the function name.
inspect.getKind Obtain the instruction kind.
inspect.getModule Obtain the function name.
inspect.getSignature Returns the function signature(s).
inspect.getSignatures Obtain the function signatures.
inspect.getSize Return the storage size for a function (in bytes).
inspect.getSource Return the original input for a function.
inspect.getStatistics Get optimizer property statistics such as #calls, #total

actions, #total time
inspect.getType Return the type of a variable (expression).
inspect.getTypeIndex Return the type index of a variable.
inspect.getTypeName Get the type name associated with a type id.
io.export Export a BAT as ASCII to a file. If the ’filepath’ is not ab-

solute, it is put into the .../dbfarm/$DB directory. Success
of failure is indicated.

io.ftable Print an n-ary table to a file.
io.import Import a BAT from an ASCII dump. The new tuples are

inserted into the parameter BAT. You have to create it!
Its signature must match the dump, else parsing errors will
occur and FALSE is returned.

io.print Print a MAL value tuple .

Appendix C: MAL Instruction Help 275

io.printf
io.printft Select default format
io.prompt Print a MAL value without brackets.
io.stderr return the error stream for the database console
io.stdin return the input stream to the database client
io.stdout return the output stream for the database client
io.table Print an n-ary table.
language.assert Assertion test
language.assertSpace Ensures that the current call does not consume more then

depth*vtop elements on the stack
language.call Evaluate a program stored in a BAT
language.dataflow The current guarded block is executed using dataflow

control
language.newRange This routine introduces an iterator over a scalar domain.
language.nextElement Advances the iterator with a fixed value until it becomes

>= last.
language.raise Raise an exception labeled with a specific message.
language.register Compile the code string and register it as a MAL function
language.source Merge the instructions stored in the file with the current

program
lock.create Create an unset lock
lock.destroy Destroy a lock
lock.set Try to set a lock. If set, block till it is freed
lock.tostr Overloaded atom function
lock.try Try a lock. If free set it, if not return EBUSY
lock.unset Unset a lock
mal.multiplex
manual.completion Produces the wordcompletion table.
manual.createXML Produces a XML-formatted manual over all modules

loaded.
manual.help Produces a list of all <module>.<function> that match the

text pattern. The wildcard ’*’ can be used for <module>
and <function>. Using the ’(’ asks for signature information
and using ’)’ asks for the complete help record.

manual.index Produces an overview of all names grouped by module.
manual.search Search the manual for command descriptions that match

the regular expression ’text’
manual.section Generate a synopsis of a module for the reference manual
manual.summary Produces a manual with help lines grouped by module.
mat.hasMoreElements Find the next element in the merge table
mat.info retrieve the definition from the partition catalogue
mat.new Define a Merge Association Table (MAT)
mat.newIterator Create an iterator over a MAT
mat.pack Materialize the MAT into the first BAT
mat.print
mdb.List Dump the routine M.F on standard out.

Appendix C: MAL Instruction Help 276

mdb.collect Dump the previous instruction to a temporary file
mdb.dot Dump the data flow of the function M.F in a format rec-

ognizable by the command ’dot’ on the file s
mdb.dump Dump instruction, stacktrace, and stack
mdb.getContext Extract the context string from the exception message
mdb.getDebug Get the kernel debugging bit-set. See the MonetDB con-

figuration file for details
mdb.getDefinition Returns a string representation of the current function with

typing information attached
mdb.getException Extract the variable name from the exception message
mdb.getReason Extract the reason from the exception message
mdb.getStackDepth Return the depth of the calling stack.
mdb.getStackFrame Collect variable binding of current (n-th) stack frame.
mdb.getStackTrace
mdb.grab Stop and debug another client process.
mdb.inspect Run the debugger on a specific function
mdb.list Dump the routine M.F on standard out.
mdb.listMapi Dump the current routine on standard out with Mapi

prefix.
mdb.setBigfoot Turn on/off memory foot print for debugger
mdb.setCatch Turn on/off catching exceptions
mdb.setDebug Set the kernel debugging bit-set and return its previous

value.
mdb.setFlow Turn on/off memory flow debugger
mdb.setIO Turn on/off io statistics tracing
mdb.setMemory Turn on/off memory statistics tracing.
mdb.setTimer Turn on/off performance timer for debugger
mdb.setTrace Turn on/off tracing of a variable
mdb.start Start interactive debugger on a running factory
mdb.stop Stop the interactive debugger
mdb.var Dump the symboltable of routine M.F on standard out.
mkey.bulk rotate xor hash pre: h and b should be synced on head post:

[:xor=]([:rotate=](h, nbits), [hash](b))
mkey.hash compute a hash int number from any value
mkey.rotate left-rotate an int by nbits
mmath.acos The acos(x) function calculates the arc cosine of x, that

is the value whose cosine is x. The value is returned in
radians and is mathematically defined to be between 0 and
PI (inclusive).

mmath.asin The asin(x) function calculates the arc sine of x, that is the
value whose sine is x. The value is returned in radians and
is mathematically defined to be between -PI/20 and -PI/2
(inclusive).

Appendix C: MAL Instruction Help 277

mmath.atan The atan(x) function calculates the arc tangent of x, that
is the value whose tangent is x. The value is returned in
radians and is mathematically defined to be between -PI/2
and PI/2 (inclusive).

mmath.atan2 The atan2(x,y) function calculates the arc tangent of the
two variables x and y. It is similar to calculating the arc
tangent of y / x, except that the signs of both arguments
are used to determine the quadrant of the result. The value
is returned in radians and is mathematically defined to be
between -PI/2 and PI/2 (inclusive).

mmath.ceil The ceil(x) function rounds x upwards to the nearest
integer.

mmath.cos The cos(x) function returns the cosine of x, where x is given
in radians. The return value is between -1 and 1.

mmath.cosh The cosh() function returns the hyperbolic cosine of x,
which is defined mathematically as (exp(x) + exp(-x)) /
2.

mmath.exp The exp(x) function returns the value of e (the base of
natural logarithms) raised to the power of x.

mmath.fabs The fabs(x) function returns the absolute value of the
floating-point number x.

mmath.finite The finite(x) function returns true if x is neither infinite
nor a ’not-a-number’ (NaN) value, and false otherwise.

mmath.floor The floor(x) function rounds x downwards to the nearest
integer.

mmath.fmod The fmod(x,y) function computes the remainder of dividing
x by y. The return value is x - n * y, where n is the quotient
of x / y, rounded towards zero to an integer.

mmath.isinf The isinf(x) function returns -1 if x represents negative
infinity, 1 if x represents positive infinity, and 0 otherwise.

mmath.isnan The isnan(x) function returns true if x is ’not-a-number’
(NaN), and false otherwise.

mmath.log The log(x) function returns the natural logarithm of x.
mmath.log10 The log10(x) function returns the base-10 logarithm of x.
mmath.pi return an important mathematical value
mmath.pow The pow(x,y) function returns the value of x raised to the

power of y.
mmath.rand return a random number
mmath.round The round(n, m) returns n rounded to m places to the right

of the decimal point; if m is omitted, to 0 places. m can
be negative to round off digits left of the decimal point. m
must be an integer.

mmath.sin The sin(x) function returns the cosine of x, where x is given
in radians. The return value is between -1 and 1.

Appendix C: MAL Instruction Help 278

mmath.sinh The sinh() function returns the hyperbolic sine of x, which
is defined mathematically as (exp(x) - exp(-x)) / 2.

mmath.sqrt The sqrt(x) function returns the non-negative square root
of x.

mmath.srand initialize the rand() function with a seed
mmath.tan The tan(x) function returns the tangent of x, where x is

given in radians
mmath.tanh The tanh() function returns the hyperbolic tangent of x,

which is defined mathematically as sinh(x) / cosh(x).
mserver.bind Bind a remote variable to a local one
mserver.connect Establish connection with a remote mserver
mserver.connect ssl Establish connection with a remote mserver using the se-

cure socket layer
mserver.destroy Destroy the handle
mserver.disconnect Terminate the session
mserver.error Check for an error in the communication
mserver.explain Turn the error seen into a string
mserver.fetch all rows Retrieve all rows into the cache
mserver.fetch field Retrieve a single chr field
mserver.fetch field array Retrieve all fields for a row
mserver.fetch line Retrieve a complete line
mserver.fetch reset Reset the cache read line.
mserver.fetch row Retrieve the next row for analysis
mserver.finish Remove all remaining answers
mserver.getError Get error message
mserver.get field count Return number of fields
mserver.get row count Return number of rows
mserver.listen Start the Mapi listener on <port> for <maxusers>. For a

new client connection MAL procedure <cmd>(Stream s in,
Stream s out) is called.If no <cmd> is specified a new client
thread is forked.

mserver.listen ssl Start the Mapi listener on <port> for <maxusers> using
SSL. <keyfile> and <certfile> give the path names for files
with the server key and certificates in PEM format. For a
new client connection MAL procedure <cmd>(Stream s in,
Stream s out) is called. If no <cmd> is specified a new
client thread is forked.

mserver.lookup Retrieve the connection identifier
mserver.malclient Start a Mapi client.
mserver.next result Go to next result set
mserver.ping Test availability of server
mserver.prepare Prepare a query for execution
mserver.put Prepare sending a value to a remote site
mserver.query Sent the query for execution
mserver.query array Sent the query for execution replacing ’?’ by arguments
mserver.query handle Sent the query for execution

Appendix C: MAL Instruction Help 279

mserver.reconnect Re-establish a connection
mserver.resume Resume connection listeners
mserver.rpc Sent a simple query for execution
mserver.setAlias Give the channel a logical name
mserver.stop Terminate connection listeners
mserver.suspend Suspend accepting connections
mserver.trace Toggle the Mapi library tracer
mtime.add returns the timestamp that comes ’msecs’ (possibly nega-

tive) after ’value’.
mtime.adddays returns the date after a number of days (possibly negative).
mtime.addmonths returns the date after a number of months (possibly

negative).
mtime.addyears returns the date after a number of years (possibly

negative).
mtime.compute compute the date from a rule in a given year
mtime.current date
mtime.current time
mtime.current timestamp
mtime.date extracts date from timestamp in a specific timezone.
mtime.date add month interval Add months to a date
mtime.date add sec interval Add seconds to a date
mtime.date sub sec interval Subtract seconds from a date
mtime.day extract day from rule.
mtime.dayname Returns day name from a number between [1-7], str(nil)

otherwise.
mtime.daynum Returns number of day [1-7] from a string or nil if does not

match any.
mtime.dayofweek Returns the current day of the week where 1=sunday, ..,

7=saturday
mtime.dayofyear Returns N where d is the Nth day of the year (january 1

returns 1)
mtime.daytime default time with zeroed components
mtime.diff returns the number of milliseconds between ’val1’ and

’val2’.
mtime.dst return whether DST holds in the timezone at a certain

point of time.
mtime.end dst extract rule that determines end of DST from timezone.
mtime.epilogue
mtime.hours extracts hour from daytime
mtime.local timezone get the local timezone in seconds
mtime.milliseconds extracts milliseconds from daytime
mtime.minutes extract minutes from rule.
mtime.month extract month from rule.
mtime.monthname Returns month name from a number between [1-12],

str(nil) otherwise.

Appendix C: MAL Instruction Help 280

mtime.monthnum Returns month number [1-12] from a string or nil if does
not match any.

mtime.msec get time of day in msec since 1-1-1970.
mtime.msecs convert date components to milliseconds
mtime.olddate create a date from the old instant format.
mtime.oldduration parse the old duration format and return an (estimated)

number of days.
mtime.prelude
mtime.rule create a DST start/end date rule.
mtime.seconds extracts seconds from daytime
mtime.setTimezone Test and set the timezone.
mtime.start dst extract rule that determines start of DST from timezone.
mtime.time add sec interval Add seconds to a time
mtime.time sub sec interval Subtract seconds from a time
mtime.time synonyms Allow synonyms for the parse format of date/timestamp.
mtime.timestamp creates a timestamp from (d,00:00:00) parameters (in the

local timezone).
mtime.timestamp add month intervalAdd months to a timestamp
mtime.timestamp add sec interval
mtime.timestamp sub month intervalSubtract months from a timestamp
mtime.timestamp sub sec interval
mtime.timezone create a timezone as an hour difference from GMT and a

DST.
mtime.timezone local get the local timezone; which is used for printing

timestamps
mtime.weekday extract weekday from rule.
mtime.weekofyear Returns the week number in the year.
mtime.year extracts year from date (nonzero value between -5867411

and +5867411).
optimizer.accessmode Reduce the number of mode changes.
optimizer.accumulators Replace calculations with accumulator model
optimizer.aliases Alias removal optimizer
optimizer.clrDebug
optimizer.coercions Handle simple type coercions
optimizer.commonTerms Common sub-expression optimizer
optimizer.costModel Estimate the cost of a relational expression
optimizer.crack Replace algebra select with crackers select
optimizer.deadcode Dead code optimizer
optimizer.dumpQEP Produce an indented tree visualisation
optimizer.emptySet Symbolic evaluation of empty BAT expressions
optimizer.evaluate Evaluate constant expressions once.
optimizer.factorize Turn function into a factory
optimizer.garbageCollector Garbage collector optimizer
optimizer.heuristics Handle simple replacements
optimizer.inline Expand inline functions
optimizer.joinPath Join path constructor

Appendix C: MAL Instruction Help 281

optimizer.joinselect Replace select with join select
optimizer.macro Inline a target function used in a specific function.
optimizer.mergetable Resolve the multi-table definitions
optimizer.multiplex Compiler for multiplexed instructions.
optimizer.optimize Optimize a specific operation
optimizer.orcam Inverse macro, find pattern and replace with a function

call.
optimizer.partitions Experiment with partitioned databases
optimizer.peephole Perform local rewrites
optimizer.prelude Initialize the optimizer
optimizer.pushranges Push constant range selections through the program
optimizer.reduce Reduce the stack space claims
optimizer.remap Remapping function calls to a their multiplex variant
optimizer.remoteQueries Resolve the multi-table definitions
optimizer.setDebug
optimizer.showFlowGraph Dump the data flow of the function M.F in a format rec-

ognizable by the command ’dot’ on the file s
optimizer.showPlan Illustrate the plan derived so far
optimizer.singleton Perform singleton optimization
optimizer.strengthReduction Move constant expressions out of the loop
optimizer.trace Collect trace of a specific operation
pcre.compile compile a pattern
pcre.like
pcre.match POSIX pattern matching against a string
pcre.patindex Location of the first POSIX pattern matching against a

string
pcre.pcre quote Return a PCRE pattern string that matches the argument

exactly.
pcre.prelude Initialize pcre
pcre.replace
pcre.select Select tuples based on the pattern
pcre.uselect Select tuples based on the pattern, only returning the head
pqueue.dequeue max Removes top element of the max-pqueue and updates it
pqueue.dequeue min Removes top element of the min-pqueue and updates it
pqueue.enqueue max Inserts element (oid,dbl) in the max-pqueue
pqueue.enqueue min Inserts element (oid,dbl) in the min-pqueue
pqueue.init Creates an empty pqueue of bat a’s tailtype with maximum

size maxsize
pqueue.topn max Return the topn elements of the bat t using a max-pqueue
pqueue.topn min Return the topn elements of the bat t using a min-pqueue
pqueue.topreplace max Replaces top element with input and updates max-pqueue
pqueue.topreplace min Replaces top element with input and updates min-pqueue
profiler.activate Make the specified counter active.
profiler.cleanup Remove the temporary tables for profiling
profiler.closeStream Stop sending the event records
profiler.clrFilter Stop tracing the variable

Appendix C: MAL Instruction Help 282

profiler.deactivate Deactivate the counter
profiler.dumpTrace List the events collected
profiler.getEvent Retrieve the performance indicators of the previous

instruction
profiler.getTrace Get the trace details of a specific event
profiler.noop Fetch any pending performance events
profiler.openStream Send the log events to a stream
profiler.reset Clear the profiler traces
profiler.setAll Short cut for setFilter(*,*).
profiler.setEndPoint End performance tracing after mod.fcn
profiler.setFilter Generate an event record for every instruction where v is

used;
profiler.setNone Short cut for clrFilter(*,*).
profiler.setStartPoint Start performance tracing at mod.fcn
profiler.start Start performance tracing
profiler.stop Stop performance tracing
scheduler.choice Select the next step in a query memo plan
scheduler.costPrediction A sample cost prediction function
scheduler.isolation Run a private copy of the MAL program
scheduler.pick Pick up the first result
scheduler.volumeCost A sample cost function based on materialized results
sema.create Create an unset sema, with an initial value
sema.destroy Destroy a semaphore
sema.down Decrement the semaphpore if >0; else block
sema.up Increment the semaphore
sqlblob.sqlblob Noop routine.
statistics.close Close the statistics box
statistics.deposit Enter a new BAT into the statistics box
statistics.destroy Destroy the statistics box
statistics.discard Release a BAT variable from the box
statistics.dump Display the statistics table
statistics.epilogue Release the resources of the statistics package
statistics.forceUpdate Bring the statistics up to date for one BAT
statistics.getCount Return latest stored count information
statistics.getHistogram Return the latest histogram
statistics.getHotset Return a table with BAT names that have been touched

since the start of the session
statistics.getMax Return latest stored maximum information
statistics.getMin Return latest stored minimum information
statistics.getObjects Return a table with BAT names managed
statistics.getSize Return latest stored count information
statistics.hasMoreElements Locate next element in the box
statistics.newIterator Locate next element in the box
statistics.open Locate and open the statistics box
statistics.prelude Initialize the statistics package
statistics.release Release a single BAT from the box

Appendix C: MAL Instruction Help 283

statistics.releaseAll Release all variables in the box
statistics.take Take a variable out of the statistics box
statistics.toString Get the string representation of an element in the box
statistics.update Check for stale information
status.batStatistics Show distribution of bats by kind
status.cpuStatistics Global cpu usage information
status.getDatabases Produce a list of known databases in the current dbfarm
status.getPorts Produce a list of default ports for a specific language
status.getThreads Produce overview of active threads
status.ioStatistics Global IO activity information
status.memStatistics Global memory usage information
status.memUsage Get a split-up of how much memory blocks are in use.
status.mem cursize the amount of physical swapspace in KB that is currently

in use
status.mem maxsize set the maximum usable amount of physical swapspace in

KB
status.vmStatistics Get a split-up of how much virtual memory blocks are in

use.
status.vm cursize the amount of logical VM space in KB that is currently in

use
status.vm maxsize set the maximum usable amount of physical swapspace in

KB
str.+ Concatenate two strings.
str.STRepilogue
str.STRprelude
str.ascii Return unicode of head of string
str.chrAt String array lookup operation.
str.codeset Return the locale’s codeset
str.endsWith Suffix check.
str.iconv String codeset conversion
str.insert Insert a string into another
str.length Return the length of a string.
str.like SQL pattern match function
str.locate Locate the start position of a string
str.ltrim Strip whitespaces from start of a string.
str.nbytes Return the string length in bytes.
str.prefix Extract the prefix of a given length
str.r search Reverse search for a char. Returns position, -1 if not found.
str.repeat
str.replace Insert a string into another
str.rtrim Strip whitespaces from end of a string.
str.search Search for a character. Returns position, -1 if not found.
str.space
str.startsWith Prefix check.
str.str Noop routine.
str.string Return substring s[offset..offset+count] of a string s[0..n]

Appendix C: MAL Instruction Help 284

str.stringleft
str.stringlength Return the length of a right trimed string (SQL semantics).
str.stringright
str.substitute Substitute first occurrence of ’src’ by ’dst’. Iff repeated =

true this is repeated while ’src’ can be found in the result
string. In order to prevent recursion and result strings
of unlimited size, repeating is only done iff src is not a
substring of dst.

str.substring Extract a substring from str starting at start, for length
len

str.suffix Extract the suffix of a given length
str.toLower Convert a string to lower case.
str.toUpper Convert a string to upper case.
str.trim Strip whitespaces around a string.
str.unicode convert a unicode to a character.
str.unicodeAt get a unicode character (as an int) from a string position.
streams.blocked open a block based stream
streams.close close and destroy the stream s
streams.flush flush the stream
streams.openRead convert an ascii stream to binary
streams.openReadBytes open a file stream for reading
streams.openWrite convert an ascii stream to binary
streams.openWriteBytes open a file stream for writing
streams.readInt read integer data from the stream
streams.readStr read string data from the stream
streams.socketRead open ascii socket stream for reading
streams.socketReadBytes open a socket stream for reading
streams.socketWrite open ascii socket stream for writing
streams.socketWriteBytes open a socket stream for writing
streams.writeInt write data on the stream
streams.writeStr write data on the stream
tablet.display Display a formatted table
tablet.dump Print all pages with header to a stream
tablet.finish Free the storage space of the report descriptor
tablet.firstPage Produce the first page of output
tablet.getPage Produce the i-th page of output
tablet.getPageCnt Return the size in number of pages
tablet.header Display the minimal header for the table
tablet.input Load a bat using specific format.
tablet.lastPage Produce the last page of output
tablet.load Load a bat using specific format.
tablet.nextPage Produce the next page of output
tablet.output Send the bat to an output stream.
tablet.page Display all pages at once without header
tablet.prevPage Produce the prev page of output
tablet.setBracket Format the brackets around a field

Appendix C: MAL Instruction Help 285

tablet.setColumn Bind i-th output column to a variable
tablet.setDecimal Set the scale and precision for numeric values
tablet.setDelimiter Set the column separator.
tablet.setFormat Initialize a new reporting structure.
tablet.setName Set the display name for a given column
tablet.setNull Set the display format for a null value for a given column
tablet.setPivot The pivot bat identifies the tuples of interest. The only

requirement is that all keys mentioned in the pivot tail exist
in all BAT parameters of the print comment. The pivot
also provides control over the order in which the tuples are
produced.

tablet.setPosition Set the character position to use for this field when loading
according to fixed (punch-card) layout.

tablet.setProperties Define the set of properties
tablet.setRowBracket Format the brackets around a row
tablet.setStream Redirect the output to a stream.
tablet.setTableBracket Format the brackets around a table
tablet.setWidth Set the maximal display witdh for a given column. All

values exceeding the length are simple shortened without
any notice.

timestamp.!= Equality of two timestamps
timestamp.< Equality of two timestamps
timestamp.<= Equality of two timestamps
timestamp.== Equality of two timestamps
timestamp.> Equality of two timestamps
timestamp.>= Equality of two timestamps
timestamp.epoch unix-time (epoch) support: seconds since epoch
timestamp.isnil Nil test for timestamp value
timestamp.unix epoch The Unix epoch time (00:00:00 UTC on January 1, 1970)
timezone.str
timezone.timestamp Utility function to create a timestamp from a number of

seconds since the Unix epoch
transaction.abort Abort changes in certain BATs.
transaction.alpha List insertions since last commit.
transaction.clean Declare a BAT clean without flushing to disk.
transaction.commit Commit changes in certain BATs.
transaction.delta List deletions since last commit.
transaction.prev The previous stae of this BAT
transaction.subcommit commit only a set of BATnames, passed in the tail (to

which you must have exclusive access!)
transaction.sync Save all persistent BATs
unix.getenv Get the environment variable string.
unix.setenv Set the environment variable string.
url.getAnchor Extract the URL anchor (reference)
url.getBasename Extract the URL base file name
url.getContent Get the URL resource in a local file

Appendix C: MAL Instruction Help 286

url.getContext Get the path context of a URL
url.getDirectory Extract directory names from the URL
url.getDomain Extract Internet domain from the URL
url.getExtension Extract the file extension of the URL
url.getFile Extract the last file name of the URL
url.getHost Extract the server name from the URL
url.getPort Extract the port id from the URL
url.getProtocol Extract the protocol from the URL
url.getQuery Extract the query string from the URL
url.getQueryArg Extract argument mappings from the URL
url.getRobotURL Extract the location of the robot control file
url.getUser Extract the user identity from the URL
url.isaURL Check conformity of the URL syntax
url.new Construct URL from protocol, host,and file
url.url Create an URL from a string literal
user.main
xml.agg Aggregate the XML values over grouping specified
xml.attribute Construct an attribute value pair
xml.comment Construct an comment struction
xml.concat Concatenate the xml values
xml.content Parse the string as a document
xml.document Parse the string as a document
xml.element The basic building block for XML elements are names-

paces, attributes and a sequence of xml elements.
The name space and the attributes may be left
unspecified(=nilt).

xml.forest Construct an element list
xml.isdocument Validate the string as a document
xml.options Create the components including NULL conversions
xml.parse Parse the XML document or element string values
xml.pi Call the processing instruction
xml.prelude
xml.root Contruct the root nodes
xml.serialize Serialize the XML object to a string
xml.str Cast the string to an xml compliant string
xml.tag Routine to put element brackets around an XML value
xml.text Serialize the XQuery object to a string
xml.xml Cast the string to an xml compliant string
xml.xquery Execute the XQuery against the elements
zrule.define Introduce a synomym timezone rule.

Appendix D: Historical Background on the VOC 287

Appendix D Historical Background on the VOC

For your convenience, we give here a short histororical background and interpretation of
what to find in this database. The introduction given below is an OCR version from the
book: J.R. Bruijn, F.S. Gaastra and I. Schaar, Dutch-Asiatic Shipping in the 17th and 18th
Centuries

The history of the VOC is an active area of research and a focal point for multi-country
heritage projects, e.g. TANAP, which includes a short historic overview of the VOC written
by world expert on the topic F. Gaastra. The archives of the VOC are spread around the
world, but a large contingent still resides in the National Archive, The Hague. The archives
comprise over 25 million historical records. Much of which has not (yet) been digitized.

This book presents tables which give a virtually complete survey of the direct shipping
between the Netherlands and Asia between 1595-1795. This period contains, first, the
voyages of the so-called Voorcompagnien and, hence, those for and under control of the
Vereenigde Oostindische Compagnie (VOC). The survey ends in 1795. That year saw an
end of the regular sailings of the VOC between the Netherlands and Asia, since, following
the Batavian revolution in January, the Netherlands became involved in war with England.
The last outward voyage left on 26 December 1794. After news of the changed situation in
the Netherlands was received in Asia, the last homeward voyage took place in the spring of
1795. The VOC itself was disbanded in 1798.

In total 66 voyages of the voorcompagnien are listed, one more than the traditionally
accepted number. The reconnaissance ship, POSTILJON, from the fleet of Mahu and De
Cordes, that was collected en route is given its own number (0022). Since the attempt of
the Australische Compagnie to circumvent the monopoly of the VOC can be considered as
a continuation of the voorcompagnien the voyage of Schouten and Le Maire is also listed
(0196-0197). For the rest, exclusively the outward and homeward voyages of the VOC are
mentioned in the tables. Of those there were in total 4722 outward and 3359 homeward.
The administration of the company was strictly followed, so that, for example, the voyage
of Hudson in 1609 (0133) is listed, but not that of Roggeveen in 1721-1722. Voyages of East
Indiamen that were driven off course, and arrived for instance in Surinam, or those which
went no further than the Cape are mentioned, as opposed to those of warships of the five
Admiralties which, from 1783, were sent to Asia to protect the fleets and possessions of the
VOC.

The sources of the journeys consist primarily of the archives of the VOC in the Algemeen
Rijksarchief in The Hague. They are, on the one hand, the so-called ’Uitloopboeken’ and
ship registers, and, on the other, the ’Overgekomen Brieven en Papieren’ (OBP’s). The
latter contain the regular reports on the arrival and departure of ships in Batavia and other
Asiatic harbors. In addition, the ’Overgekomen Brieven van de Kaap de Goede Hoop’ and
some other, more dispersed sources must be mentioned. The data on the voyages of the
voorcompagnien derive above all from ources published by the Linschoten Vereeniging.

In volume I, the principal sources are described extensively and the origin of the in-
formation on each voyage is given. In addition, that volume contains an introduction on
the organization of the VOC’s shipping, which also includes an analysis and summary of
the data presented in the tables. Various other supplementary information, such as the
value of the export from the Netherlands, only available by year, is also published there.
The tables follow closely the material presented in the major sources (’Uitloopboeken’ en

Appendix D: Historical Background on the VOC 288

OBP’s). Since these sources are not uniform over a period of almost two centuries, the level
of completeness of the information given for each voyage also varies.

Homeward voyage During the compilation of the tables it became necessary in a few
cases to add an A to some numbers. This occurred 5 times, in the following places: 5022,
5980, 5987, 6246 and 6649. Similarly in three cases a number had to be left open. The
following numbers have not been used: 4605, 5027 and 8215. The voyage number is followed
by a figure which shows whether the ship is making its first, second or subsequent voyage.
The outward and homeward voyages are counted separately. The first voyage from the
Netherlands and the subsequent homeward voyages are both shown by a ‘1’. Occasionally
a ship was built or acquired in Asia. The first outward voyage of such a ship is considered
as its second voyage.

Ship’s name A uniform spelling has been chosen for the numerous variants given in the
sources. In alphabetical ordering and in the index, the most relevant word was chosen.
Thus the WAPEN VAN, HOORN (0243) is given under HOORN, the HOF NIET ALTIJD
ZOMER (2380) under ZOMER and the VROUWE REBECCA JACOBA (3668) under RE-
BECCA. It should be noted that especially in the seventeenth century ships’ names were
frequently provided with additions which were not used in a consistent fashion. The AM-
STERDAM (0431) was sometimes called NIEUWAMSTERDAM, the WITTE OLIFANT
(0533), the OLIFANT. The most frequent name is given in the tables. In the eighteenth
century, especially, ships’ names were frequently changed, or they used each other’s names.
This is always mentioned under the heading Particulars and in the index.

Master’s name Similarly, a uniform spelling has been chosen for the name of the master,
generally schipper, but in the eighteenth century also a kapitein or kapiteinluitenant. The
index is arranged by surname or patronymic.

Tonnage The volume of the ships is given in metric tons. The sources give the figures
in lasten (1 last = 2 tons). After 1636, however, information in lasten is no longer of any
value, as, for fiscal reasons, the VOC’s figures were kept artificially low. Since then the
volume has been calculated on the basis of the measurements of the ships, according to a
simple formula (volume in lasten = length x breadth x depth in Amsterdam feet, divided
by 200; 1 ft. = 28,3 cm). The results of this calculation have been doubled and are given
in the tables. This method and the problems regarding the assessment of the ships’ volume
is described in Volume I. In a number of cases where inconsistent information was found,
both calculations are given, thus e.g. 600/850.

Type of ship Occasionally, in those cases where this is mentioned in the sources, the type
of the ship is given in the same column as the tonnage. In general, the most frequent type
of ship, the retourschip (East Indiaman) is not mentioned in the sources. Therefore, where
the type of ship is not mentioned, it may often be assumed that an East Indiaman is meant.
The various other types - hoeker, kat, pinas, jacht, fluit, paketboot - are given in Dutch.

Built The year given in this column refers to the year in which the ship was built. If the
ship was hired or bought by the VOC, then this is mentioned in the column, together with
the year in which the transaction occurred.

Yard The place is given where the ship was built. The chambers of the VOC had their
own yard. ’A’ refers to Amsterdam, ’Z’ to Zeeland, ’D’ to Delft, ’R’ to Rotterdam, ’H’
to Hoorn, and ’E’ to Enkhuizen. When a ship was hired or bought by the VOC, the
letter indicates the chamber that was responsible for the transaction. The ships of the

Appendix D: Historical Background on the VOC 289

voorcompagnien did not belong to a chamber. In these cases, A’ indicates that a ship was
built at an Amsterdam yard. The chambers also had no part in the buying or building of
ships by the Hoge Regering in Batavia. In these cases the place of building or purchase in
Asia is given.

Chamber With the outward voyages, this column gives the chamber which equipped the
ship; with the homeward, the chamber to which the ship was addressed. There is no entry
in this column for ships organized by the voorcompagnien

Departure

Under this heading is given the date and place of departure from Europe, Asia or the
Cape of Good Hope. A date like 03-02-1645 refers to 3 February 1645. Where sailings
from the Republic are concerned, the date given refers to the departure from the roads.
Amsterdam, Hoorn and Enkhuizen ships generally left from Texel roads, Zeeland ships from
the Wielingen or the roads of Rammekens, and Rotterdam and Delft ships from Goeree.
Sometimes, ships were forced by storms or damage to return to the roads for a time or they
sought shelter in one of the estuaries on the coast of Holland or Zeeland. Where possible,
this is mentioned under the heading Particulars. In general the first date of departure is
given in the tables, but in some cases, a later date has been chosen, in deference to the
sources.

As for leaving Batavia, departure from the roads of the town was decisive, and not, as
is frequently described in the Company papers, the reaching of the ‘open sea’ after passing
the Sunda Strait. Where departures from other Asian ports are concerned in general only
the Company establishment from which the ship sailed is given. Thus Ceylon is mentioned
in the columns, but it can be assumed that most ships left from the Bay of Galle, at the
southern point of the island. China is given for ships which left from Canton, and the date
refers to departure from the roads at Whampoa. Bengal is given for ships which left from
the anchorage in the Ganges close to the VOC-establishment at Hughly.

Call at Cape The data in this column give the arrival at (above) and the departure
(below) from the Cape of Good Hope. In general no distinction is made between Table Bay
and False Bay. Mention is made, when given in the sources, of ships which put in to the
more northerly Saldanha and St. Helena Bays. When a ship sailed past the Cape, this is
denoted by ‘no call’. When it is not known whether the ship stopped at the Cape at all
- especially frequent before the foundation of the refreshment station there in 1652 - the
column is left blank.

Arrival The third column contains the date and place of arrival in Asia, Europe or,
when that was the destination of the journey, at the Cape of Good Hope. The place of
arrival is given in the same manner as that of departure, though, in addition to the estuaries
mentioned above, ships sometimes arrived in the Netherlands via the Vlie or at Delfzijl. The
place of arrival in Asia refers to the establishment reached, unless the sources specify the
actual port.

On board It is possible to differentiate the number of those on board into various cat-
egories. For the outward journey, these are seafarers, soldiers, craftsmen, and passengers.
The craftsmen are those who were employed to perform some particular service in Asia, and
are thus not part of the crew as such. ’Passengers’ is in fact a residual category, including
high officials of the Company, including ministers of religion with their wives and servants,
but also slaves and stowaways. Whenever such a differentiation is not possible, which is

Appendix D: Historical Background on the VOC 290

especially the case in the early years, a figure for the total is given. Italics are used for this,
or when the figures refer to more than one category. Only those categories are mentioned
which were on board. Therefore, when one category is mentioned, this implies that the
others were not represented on board.

The sources for the return voyages are of a different kind and normally far less complete.
They are totally absent for the journey between the Cape and the Netherlands. However,
another category must be mentioned, namely the impotenten, who for various reasons were
released from active service for the VOC and sent back to Europe. With regard to many
voyages the sources only give the number of passengers and impotenten, and not the number
of sailors and soldiers. Obviously, the absence of figures under these headings does not imply
that there were none on board.

Information on the outward voyages is divided into six columns:

1. onboard at departure The number on board at departure
2. death at cape The number dying between the Netherlands and the Cape. Frequently

this figure refers to all the categories together, even when the other information is
available per category. In such cases this figure is printed in italics.

3. left at cape The number who leave the ship at the Cape.
4. onboard at cape The number who come on board at the Cape.
5. death during voyage The number dying on the whole voyage. Subtraction of III from

V gives the number dying between the Cape and Asia.
6. onboard at arrival The number on board on arrival in Asia.

Three columns are given for the homeward voyages:

1. onboard at departure The number on board at departure
2. death at cape The number dying en route to the Cape
3. left at cape The number who went from board at the Cape

The figures in the various columns are taken from different sources which are not always
consistent with each other. Therefore the figures on changes in the number of those on board
during the voyages do not always tally with those on the size of the crew at departure and
arrival.

Invoice value For the return voyages, the total value of the ship’s cargo, according to
the invoice made up in Batavia or some other establishment, is given, as is the chamber for
which the cargo was destined. Generally, this was for the chamber under whose jurisdiction
the ship sailed, but occasionally a proportion of the cargo was for one or more of the other
chambers.

Particulars Under the last heading details deriving from the basic sources are given.
They are generally incidental and as such not to be placed in one of the preceding columns.
Because the sources are not the same across the whole period, and at times less complete,
the extent and sort of material under this heading could not be consistent.

In so far as it is available, information deals with the ports of call on the journey, with
the details of changes in the composition of the crew and with the eventual fate of the
ship. For the return voyage, the name of the fleet-commander is generally given, and, after
his name, the number of the ship he was on. Finally, where necessary, differences in data

Appendix D: Historical Background on the VOC 291

between various sources are indicated. Occasionally, particulars from a published source
are added.

Corresponding number This number, placed at the far right of the tables, denotes the
next homeward voyage of the ship in volume II (naturally absent when the ship remains in
Asia), or, in volume III, for homeward voyages, the number of the ship’s previous outward
voyage. In those cases where the ship was acquired in Asia, no corresponding number is
given for the first homeward voyage from Asia.

Due to the long duration of the preparation of these two volumes there are some incon-
sistencies in the text of the particulars and in the use of language.

